These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 1837467)

  • 1. Pumping capabilities of the latissimus dorsi and rectus abdominis muscles wrapped around a valved pouch in a mock circulatory system.
    Wessale JL; Geddes LA; Badylak SF; Tacker WA; Janas W
    ASAIO Trans; 1991; 37(4):615-9. PubMed ID: 1837467
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The use of an electrically activated valve to control preload and provide maximal muscle blood flow with a skeletal-muscle ventricle.
    Geddes LA; Wessale JL; Badylak SF; Janas W; Tacker WA; Voorhees WD
    Pacing Clin Electrophysiol; 1990 Jun; 13(6):783-95. PubMed ID: 1695359
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Output power and metabolic input power of skeletal muscle contracting linearly to compress a pouch in a mock circulatory system.
    Geddes LA; Badylak SF; Tacker WA; Janas W
    J Thorac Cardiovasc Surg; 1992 Nov; 104(5):1435-42. PubMed ID: 1434727
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The ventricular-synchronous, skeletal-muscle ventricle: preliminary feasibility studies.
    Geddes LA; Janas W; Hinds M; Badylak SF; Cook J
    Pacing Clin Electrophysiol; 1993 Jun; 16(6):1310-22. PubMed ID: 7686661
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The pumping and left ventricular unloading capabilities of the ventricular synchronous skeletal-muscle ventricle.
    Geddes LA; Janas W; Hinds M; Cook J
    J Thorac Cardiovasc Surg; 1995 Jun; 109(6):1127-37. PubMed ID: 7776677
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optimization of pulse train duration for the electrical stimulation of a skeletal muscle ventricle in the dog.
    Badylak SF; Wessale JE; Geddes LA; Janas W
    Ann Biomed Eng; 1990; 18(5):467-78. PubMed ID: 2240710
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Can noncardiac muscle provide useful cardiac assistance? Preliminary studies of the properties of skeletal muscle.
    Stevens L; Brown J
    Am Surg; 1986 Aug; 52(8):423-7. PubMed ID: 2942069
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The use of electrically stimulated skeletal muscle to pump blood.
    Geddes LA; Badylak SF; Wessale Jl; Janas W; Bourland JD; Tacker WA; Stevens L
    Pacing Clin Electrophysiol; 1990 Mar; 13(3):344-62. PubMed ID: 1690407
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Left ventricular assistance in dogs using a skeletal muscle powered device for diastolic augmentation.
    Neilson IR; Brister SJ; Khalafalla AS; Chiu RC
    J Heart Transplant; 1985 May; 4(3):343-7. PubMed ID: 2956394
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effect of skeletal muscle ventricle pouch pressure on muscle blood flow.
    Badylak SF; Wessale JE; Geddes LA; Tacker WA; Janas W
    ASAIO J; 1992; 38(1):66-71. PubMed ID: 1532516
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Power capability of skeletal muscle to pump blood.
    Geddes LA; Badylak SF
    ASAIO Trans; 1991; 37(1):19-23. PubMed ID: 2012713
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of canine skeletal muscle power from twitches and tetanic contractions in untrained muscle: a preliminary report.
    Tacker WA; Geddes LA; Janas W; Babbs CF; Badylak SF
    J Card Surg; 1991 Mar; 6(1 Suppl):245-51. PubMed ID: 1839665
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dynamic training of skeletal muscle ventricles. A method to increase muscular power for cardiac assistance.
    Guldner NW; Eichstaedt HC; Klapproth P; Tilmans MH; Thuaudet S; Umbrain V; Ruck K; Wyffels E; Bruyland M; Sigmund M
    Circulation; 1994 Mar; 89(3):1032-40. PubMed ID: 8124788
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hydraulic pouches of canine latissimus dorsi. Potential for left ventricular assistance.
    Mannion JD; Hammond R; Stephenson LW
    J Thorac Cardiovasc Surg; 1986 Apr; 91(4):534-44. PubMed ID: 3959572
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The relation between latissimus dorsi skeletal muscle structure and contractile function after cardiomyoplasty.
    Kratz JM; Johnson WS; Mukherjee R; Hu J; Crawford FA; Spinale FG
    J Thorac Cardiovasc Surg; 1994 Mar; 107(3):868-78. PubMed ID: 8127116
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Conformational adaptation of muscle: implications in cardiomyoplasty and skeletal muscle ventricles.
    Gealow KK; Solien EE; Bianco RW; Chiu RC; Shumway SJ
    Ann Thorac Surg; 1993 Sep; 56(3):520-6. PubMed ID: 8379726
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stimulated preconditioned skeletal muscle cardiomyoplasty. An effective means of cardiac assist.
    Chagas AC; Moreira LF; da Luz PL; Camarano GP; Leirner A; Stolf NA; Jatene AD
    Circulation; 1989 Nov; 80(5 Pt 2):III202-8. PubMed ID: 2805302
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison of three methods of electrical stimulation for converting skeletal muscle to a fatigue resistant power source suitable for cardiac assistance.
    Badylak SF; Hinds M; Geddes LA
    Ann Biomed Eng; 1990; 18(3):239-50. PubMed ID: 2372161
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Skeletal muscle ventricles as a potential right heart assist or substitute.
    Anderson WA; Andersen JS; Bridges CR; Hammond RL; DiMeo F; Frisch EE; Salmons S; Stephenson LW
    ASAIO Trans; 1988; 34(3):241-6. PubMed ID: 3196514
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Static left latissimus dorsi cardiomyoplasty: effect on left ventricular function.
    Lazzara RR; Park SE; Cmolik BL; Trumble DR; Magovern JA
    J Heart Lung Transplant; 1993; 12(6 Pt 1):1024-8. PubMed ID: 8312303
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.