These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
201 related articles for article (PubMed ID: 18374940)
1. Membrane structure of CtrA3, a copper-transporting P-type-ATPase from Aquifex aeolicus. Chintalapati S; Al Kurdi R; van Scheltinga AC; Kühlbrandt W J Mol Biol; 2008 May; 378(3):581-95. PubMed ID: 18374940 [TBL] [Abstract][Full Text] [Related]
2. Metal binding affinities of Arabidopsis zinc and copper transporters: selectivities match the relative, but not the absolute, affinities of their amino-terminal domains. Zimmermann M; Clarke O; Gulbis JM; Keizer DW; Jarvis RS; Cobbett CS; Hinds MG; Xiao Z; Wedd AG Biochemistry; 2009 Dec; 48(49):11640-54. PubMed ID: 19883117 [TBL] [Abstract][Full Text] [Related]
3. The structure and function of heavy metal transport P1B-ATPases. Argüello JM; Eren E; González-Guerrero M Biometals; 2007 Jun; 20(3-4):233-48. PubMed ID: 17219055 [TBL] [Abstract][Full Text] [Related]
4. Functional roles of metal binding domains of the Archaeoglobus fulgidus Cu(+)-ATPase CopA. Mandal AK; Argüello JM Biochemistry; 2003 Sep; 42(37):11040-7. PubMed ID: 12974640 [TBL] [Abstract][Full Text] [Related]
5. Solution structure of the N-terminal domain of a potential copper-translocating P-type ATPase from Bacillus subtilis in the apo and Cu(I) loaded states. Banci L; Bertini I; Ciofi-Baffoni S; D'Onofrio M; Gonnelli L; Marhuenda-Egea FC; Ruiz-Dueñas FJ J Mol Biol; 2002 Mar; 317(3):415-29. PubMed ID: 11922674 [TBL] [Abstract][Full Text] [Related]
6. Independent evolution of heavy metal-associated domains in copper chaperones and copper-transporting atpases. Jordan IK; Natale DA; Koonin EV; Galperin MY J Mol Evol; 2001 Dec; 53(6):622-33. PubMed ID: 11677622 [TBL] [Abstract][Full Text] [Related]
7. Negative regulation of AAA + ATPase assembly by two component receiver domains: a transcription activation mechanism that is conserved in mesophilic and extremely hyperthermophilic bacteria. Doucleff M; Chen B; Maris AE; Wemmer DE; Kondrashkina E; Nixon BT J Mol Biol; 2005 Oct; 353(2):242-55. PubMed ID: 16169010 [TBL] [Abstract][Full Text] [Related]
8. Inter-domain motions of the N-domain of the KdpFABC complex, a P-type ATPase, are not driven by ATP-induced conformational changes. Haupt M; Bramkamp M; Coles M; Altendorf K; Kessler H J Mol Biol; 2004 Oct; 342(5):1547-58. PubMed ID: 15364580 [TBL] [Abstract][Full Text] [Related]
9. Functional modules of KdpB, the catalytic subunit of the Kdp-ATPase from Escherichia coli. Bramkamp M; Altendorf K Biochemistry; 2004 Sep; 43(38):12289-96. PubMed ID: 15379567 [TBL] [Abstract][Full Text] [Related]
10. Structural model of the CopA copper ATPase of Enterococcus hirae based on chemical cross-linking. Lübben M; Portmann R; Kock G; Stoll R; Young MM; Solioz M Biometals; 2009 Apr; 22(2):363-75. PubMed ID: 18979168 [TBL] [Abstract][Full Text] [Related]
11. Structure of the actuator domain from the Archaeoglobus fulgidus Cu(+)-ATPase. Sazinsky MH; Agarwal S; Argüello JM; Rosenzweig AC Biochemistry; 2006 Aug; 45(33):9949-55. PubMed ID: 16906753 [TBL] [Abstract][Full Text] [Related]
12. Atx1-like chaperones and their cognate P-type ATPases: copper-binding and transfer. Singleton C; Le Brun NE Biometals; 2007 Jun; 20(3-4):275-89. PubMed ID: 17225061 [TBL] [Abstract][Full Text] [Related]
13. Novel Zn2+ coordination by the regulatory N-terminus metal binding domain of Arabidopsis thaliana Zn(2+)-ATPase HMA2. Eren E; González-Guerrero M; Kaufman BM; Argüello JM Biochemistry; 2007 Jul; 46(26):7754-64. PubMed ID: 17550234 [TBL] [Abstract][Full Text] [Related]
14. Novel bacterial P-type ATPases with histidine-rich heavy-metal-associated sequences. Trenor C; Lin W; Andrews NC Biochem Biophys Res Commun; 1994 Dec; 205(3):1644-50. PubMed ID: 7811248 [TBL] [Abstract][Full Text] [Related]
15. Cu(I)- and proton-binding properties of the first N-terminal soluble domain of Bacillus subtilis CopA. Zhou L; Singleton C; Hecht O; Moore GR; Le Brun NE FEBS J; 2012 Jan; 279(2):285-98. PubMed ID: 22077885 [TBL] [Abstract][Full Text] [Related]
16. Single amino acid substitution in the putative transmembrane helix V in KdpB of the KdpFABC complex of Escherichia coli uncouples ATPase activity and ion transport. Bramkamp M; Altendorf K Biochemistry; 2005 Jun; 44(23):8260-6. PubMed ID: 15938615 [TBL] [Abstract][Full Text] [Related]
17. Conservative and nonconservative mutations of the transmembrane CPC motif in ZntA: effect on metal selectivity and activity. Dutta SJ; Liu J; Stemmler AJ; Mitra B Biochemistry; 2007 Mar; 46(12):3692-703. PubMed ID: 17326661 [TBL] [Abstract][Full Text] [Related]
18. Prokaryotic Kdp-ATPase: recent insights into the structure and function of KdpB. Haupt M; Bramkamp M; Coles M; Kessler H; Altendorf K J Mol Microbiol Biotechnol; 2005; 10(2-4):120-31. PubMed ID: 16645309 [TBL] [Abstract][Full Text] [Related]
19. Copper(I) interaction with model peptides of WD6 and TM6 domains of Wilson ATPase: regulatory and mechanistic implications. Myari A; Hadjiliadis N; Fatemi N; Sarkar B J Inorg Biochem; 2004 Sep; 98(9):1483-94. PubMed ID: 15337600 [TBL] [Abstract][Full Text] [Related]
20. The structure of Mg-ATPase nucleotide-binding domain at 1.6 A resolution reveals a unique ATP-binding motif. Håkansson KO Acta Crystallogr D Biol Crystallogr; 2009 Nov; 65(Pt 11):1181-6. PubMed ID: 19923713 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]