These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
201 related articles for article (PubMed ID: 18374940)
21. ATP binding properties of the soluble part of the KdpC subunit from the Escherichia coli K(+)-transporting KdpFABC P-type ATPase. Ahnert F; Schmid R; Altendorf K; Greie JC Biochemistry; 2006 Sep; 45(36):11038-46. PubMed ID: 16953591 [TBL] [Abstract][Full Text] [Related]
22. Role of the N-terminal tail of metal-transporting P(1B)-type ATPases from genome-wide analysis and molecular dynamics simulations. Sharma S; Rosato A J Chem Inf Model; 2009 Jan; 49(1):76-83. PubMed ID: 19090784 [TBL] [Abstract][Full Text] [Related]
23. Copper-transporting ATPases: The evolutionarily conserved machineries for balancing copper in living systems. Migocka M IUBMB Life; 2015 Oct; 67(10):737-45. PubMed ID: 26422816 [TBL] [Abstract][Full Text] [Related]
24. Kinetic analysis of metal binding to the amino-terminal domain of ZntA by monitoring metal-thiolate charge-transfer complexes. Dutta SJ; Liu J; Mitra B Biochemistry; 2005 Nov; 44(43):14268-74. PubMed ID: 16245943 [TBL] [Abstract][Full Text] [Related]
26. Modulation and Functional Role of the Orientations of the N- and P-Domains of Cu+ -Transporting ATPase along the Ion Transport Cycle. Meng D; Bruschweiler-Li L; Zhang F; Brüschweiler R Biochemistry; 2015 Aug; 54(32):5095-102. PubMed ID: 26196187 [TBL] [Abstract][Full Text] [Related]
27. Conserved aspartic acid 714 in transmembrane segment 8 of the ZntA subgroup of P1B-type ATPases is a metal-binding residue. Dutta SJ; Liu J; Hou Z; Mitra B Biochemistry; 2006 May; 45(18):5923-31. PubMed ID: 16669635 [TBL] [Abstract][Full Text] [Related]
28. Heavy metal transport CPx-ATPases from the thermophile Archaeoglobus fulgidus. Argüello JM; Mandal AK; Mana-Capelli S Ann N Y Acad Sci; 2003 Apr; 986():212-8. PubMed ID: 12763798 [TBL] [Abstract][Full Text] [Related]
29. Structure of the rotor of the V-Type Na+-ATPase from Enterococcus hirae. Murata T; Yamato I; Kakinuma Y; Leslie AG; Walker JE Science; 2005 Apr; 308(5722):654-9. PubMed ID: 15802565 [TBL] [Abstract][Full Text] [Related]
30. Crystal structure of a divalent metal ion transporter CorA at 2.9 angstrom resolution. Eshaghi S; Niegowski D; Kohl A; Martinez Molina D; Lesley SA; Nordlund P Science; 2006 Jul; 313(5785):354-7. PubMed ID: 16857941 [TBL] [Abstract][Full Text] [Related]
31. Archaeoglobus fulgidus CopB is a thermophilic Cu2+-ATPase: functional role of its histidine-rich-N-terminal metal binding domain. Mana-Capelli S; Mandal AK; Argüello JM J Biol Chem; 2003 Oct; 278(42):40534-41. PubMed ID: 12876283 [TBL] [Abstract][Full Text] [Related]
33. P(1B)-ATPases--an ancient family of transition metal pumps with diverse functions in plants. Williams LE; Mills RF Trends Plant Sci; 2005 Oct; 10(10):491-502. PubMed ID: 16154798 [TBL] [Abstract][Full Text] [Related]
34. Molecular structure and metal-binding properties of the periplasmic CopK protein expressed in Cupriavidus metallidurans CH34 during copper challenge. Bersch B; Favier A; Schanda P; van Aelst S; Vallaeys T; Covès J; Mergeay M; Wattiez R J Mol Biol; 2008 Jul; 380(2):386-403. PubMed ID: 18533181 [TBL] [Abstract][Full Text] [Related]
35. Role of metal-binding domains of the copper pump from Archaeoglobus fulgidus. Rice WJ; Kovalishin A; Stokes DL Biochem Biophys Res Commun; 2006 Sep; 348(1):124-31. PubMed ID: 16876128 [TBL] [Abstract][Full Text] [Related]
36. Common patterns and unique features of P-type ATPases: a comparative view on the KdpFABC complex from Escherichia coli (Review). Bramkamp M; Altendorf K; Greie JC Mol Membr Biol; 2007; 24(5-6):375-86. PubMed ID: 17710642 [TBL] [Abstract][Full Text] [Related]
37. Properties and function of the P type ion pumps cloned from Helicobacter pylori. Melchers K; Herrmann L; Mauch F; Bayle D; Heuermann D; Weitzenegger T; Schuhmacher A; Sachs G; Haas R; Bode G; Bensch K; Schäfer KP Acta Physiol Scand Suppl; 1998 Aug; 643():123-35. PubMed ID: 9789554 [TBL] [Abstract][Full Text] [Related]
38. Phylogenetic analysis of heavy-metal ATPases in fungi and characterization of the copper-transporting ATPase of Cochliobolus heterostrophus. Saitoh Y; Izumitsu K; Tanaka C Mycol Res; 2009; 113(Pt 6-7):737-45. PubMed ID: 19249363 [TBL] [Abstract][Full Text] [Related]
39. Identification of the transmembrane metal binding site in Cu+-transporting PIB-type ATPases. Mandal AK; Yang Y; Kertesz TM; Argüello JM J Biol Chem; 2004 Dec; 279(52):54802-7. PubMed ID: 15494391 [TBL] [Abstract][Full Text] [Related]
40. The transport mechanism of bacterial Cu+-ATPases: distinct efflux rates adapted to different function. Raimunda D; González-Guerrero M; Leeber BW; Argüello JM Biometals; 2011 Jun; 24(3):467-75. PubMed ID: 21210186 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]