These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
201 related articles for article (PubMed ID: 18374940)
41. Understanding copper trafficking in bacteria: interaction between the copper transport protein CopZ and the N-terminal domain of the copper ATPase CopA from Bacillus subtilis. Banci L; Bertini I; Ciofi-Baffoni S; Del Conte R; Gonnelli L Biochemistry; 2003 Feb; 42(7):1939-49. PubMed ID: 12590580 [TBL] [Abstract][Full Text] [Related]
42. FITC binding site and p-nitrophenyl phosphatase activity of the Kdp-ATPase of Escherichia coli. Bramkamp M; Gassel M; Altendorf K Biochemistry; 2004 Apr; 43(15):4559-67. PubMed ID: 15078102 [TBL] [Abstract][Full Text] [Related]
43. Metal-binding affinity of the transmembrane site in ZntA: implications for metal selectivity. Liu J; Dutta SJ; Stemmler AJ; Mitra B Biochemistry; 2006 Jan; 45(3):763-72. PubMed ID: 16411752 [TBL] [Abstract][Full Text] [Related]
44. Solution structure of the KdpFABC P-type ATPase from Escherichia coli by electron microscopic single particle analysis. Heitkamp T; Böttcher B; Greie JC J Struct Biol; 2009 Jun; 166(3):295-302. PubMed ID: 19285138 [TBL] [Abstract][Full Text] [Related]
45. Induction of heavy-metal-transporting CPX-type ATPases during acid adaptation in Lactobacillus bulgaricus. Penaud S; Fernandez A; Boudebbouze S; Ehrlich SD; Maguin E; van de Guchte M Appl Environ Microbiol; 2006 Dec; 72(12):7445-54. PubMed ID: 16997986 [TBL] [Abstract][Full Text] [Related]
46. Double hexameric ring assembly of the type III protein translocase ATPase HrcN. Müller SA; Pozidis C; Stone R; Meesters C; Chami M; Engel A; Economou A; Stahlberg H Mol Microbiol; 2006 Jul; 61(1):119-25. PubMed ID: 16824099 [TBL] [Abstract][Full Text] [Related]
47. Crystal structure of the plasma membrane proton pump. Pedersen BP; Buch-Pedersen MJ; Morth JP; Palmgren MG; Nissen P Nature; 2007 Dec; 450(7172):1111-4. PubMed ID: 18075595 [TBL] [Abstract][Full Text] [Related]
48. K+-translocating KdpFABC P-type ATPase from Escherichia coli acts as a functional and structural dimer. Heitkamp T; Kalinowski R; Böttcher B; Börsch M; Altendorf K; Greie JC Biochemistry; 2008 Mar; 47(11):3564-75. PubMed ID: 18298081 [TBL] [Abstract][Full Text] [Related]
49. A large domain swap in the VirB11 ATPase of Brucella suis leaves the hexameric assembly intact. Hare S; Bayliss R; Baron C; Waksman G J Mol Biol; 2006 Jun; 360(1):56-66. PubMed ID: 16730027 [TBL] [Abstract][Full Text] [Related]
50. Structure and dynamics of Cu(I) binding in copper chaperones Atox1 and CopZ: a computer simulation study. Rodriguez-Granillo A; Wittung-Stafshede P J Phys Chem B; 2008 Apr; 112(15):4583-93. PubMed ID: 18361527 [TBL] [Abstract][Full Text] [Related]
51. Structural basis for metal binding specificity: the N-terminal cadmium binding domain of the P1-type ATPase CadA. Banci L; Bertini I; Ciofi-Baffoni S; Su XC; Miras R; Bal N; Mintz E; Catty P; Shokes JE; Scott RA J Mol Biol; 2006 Feb; 356(3):638-50. PubMed ID: 16388822 [TBL] [Abstract][Full Text] [Related]
52. Structure and Function of Cu(I)- and Zn(II)-ATPases. Sitsel O; Grønberg C; Autzen HE; Wang K; Meloni G; Nissen P; Gourdon P Biochemistry; 2015 Sep; 54(37):5673-83. PubMed ID: 26132333 [TBL] [Abstract][Full Text] [Related]
53. Structural characterization of the stringent response related exopolyphosphatase/guanosine pentaphosphate phosphohydrolase protein family. Kristensen O; Laurberg M; Liljas A; Kastrup JS; Gajhede M Biochemistry; 2004 Jul; 43(28):8894-900. PubMed ID: 15248747 [TBL] [Abstract][Full Text] [Related]
54. [Structure and function of heavy metal transporter P(1B)-ATPase in plant: a review]. Zhang Y; Zhang Y; Sun T; Chai T Sheng Wu Gong Cheng Xue Bao; 2010 Jun; 26(6):715-25. PubMed ID: 20815250 [TBL] [Abstract][Full Text] [Related]
55. Three-dimensional structure of the ion-coupled transport protein NhaA. Williams KA Nature; 2000 Jan; 403(6765):112-5. PubMed ID: 10638764 [TBL] [Abstract][Full Text] [Related]
56. Structural insight into the distinct properties of copper transport by the Helicobacter pylori CopP protein. Park SJ; Jung YS; Kim JS; Seo MD; Lee BJ Proteins; 2008 May; 71(2):1007-19. PubMed ID: 18214986 [TBL] [Abstract][Full Text] [Related]
57. Metal Selectivity of a Cd-, Co-, and Zn-Transporting P Smith AT; Ross MO; Hoffman BM; Rosenzweig AC Biochemistry; 2017 Jan; 56(1):85-95. PubMed ID: 28001366 [TBL] [Abstract][Full Text] [Related]
58. Unprecedented binding cooperativity between Cu(I) and Cu(II) in the copper resistance protein CopK from Cupriavidus metallidurans CH34: implications from structural studies by NMR spectroscopy and X-ray crystallography. Chong LX; Ash MR; Maher MJ; Hinds MG; Xiao Z; Wedd AG J Am Chem Soc; 2009 Mar; 131(10):3549-64. PubMed ID: 19236095 [TBL] [Abstract][Full Text] [Related]
59. Structure of a copper pump suggests a regulatory role for its metal-binding domain. Wu CC; Rice WJ; Stokes DL Structure; 2008 Jun; 16(6):976-85. PubMed ID: 18547529 [TBL] [Abstract][Full Text] [Related]