These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
915 related articles for article (PubMed ID: 18375577)
1. Shear fluid-induced Ca2+ release and the role of mitochondria in rat cardiac myocytes. Belmonte S; Morad M Ann N Y Acad Sci; 2008 Mar; 1123():58-63. PubMed ID: 18375577 [TBL] [Abstract][Full Text] [Related]
2. Multimodality of Ca2+ signaling in rat atrial myocytes. Morad M; Javaheri A; Risius T; Belmonte S Ann N Y Acad Sci; 2005 Jun; 1047():112-21. PubMed ID: 16093489 [TBL] [Abstract][Full Text] [Related]
3. Metabolic inhibition alters subcellular calcium release patterns in rat ventricular myocytes: implications for defective excitation-contraction coupling during cardiac ischemia and failure. Fukumoto GH; Lamp ST; Motter C; Bridge JH; Garfinkel A; Goldhaber JI Circ Res; 2005 Mar; 96(5):551-7. PubMed ID: 15718501 [TBL] [Abstract][Full Text] [Related]
4. Propagation of Ca2+ release in cardiac myocytes: role of mitochondria. Seguchi H; Ritter M; Shizukuishi M; Ishida H; Chokoh G; Nakazawa H; Spitzer KW; Barry WH Cell Calcium; 2005 Jul; 38(1):1-9. PubMed ID: 15993240 [TBL] [Abstract][Full Text] [Related]
5. CCCP enhances catecholamine release from the perfused rat adrenal medulla. Lim DY; Park HG; Miwa S Auton Neurosci; 2006 Jul; 128(1-2):37-47. PubMed ID: 16461015 [TBL] [Abstract][Full Text] [Related]
6. Sarcoplasmic reticulum Ca2+ refilling controls recovery from Ca2+-induced Ca2+ release refractoriness in heart muscle. Szentesi P; Pignier C; Egger M; Kranias EG; Niggli E Circ Res; 2004 Oct; 95(8):807-13. PubMed ID: 15388639 [TBL] [Abstract][Full Text] [Related]
7. Voltage dependence of cardiac excitation-contraction coupling: unitary Ca2+ current amplitude and open channel probability. Altamirano J; Bers DM Circ Res; 2007 Sep; 101(6):590-7. PubMed ID: 17641229 [TBL] [Abstract][Full Text] [Related]
8. Axial stretch enhances sarcoplasmic reticulum Ca2+ leak and cellular Ca2+ reuptake in guinea pig ventricular myocytes: experiments and models. Iribe G; Kohl P Prog Biophys Mol Biol; 2008; 97(2-3):298-311. PubMed ID: 18395247 [TBL] [Abstract][Full Text] [Related]
9. 'Pressure-flow'-triggered intracellular Ca2+ transients in rat cardiac myocytes: possible mechanisms and role of mitochondria. Belmonte S; Morad M J Physiol; 2008 Mar; 586(5):1379-97. PubMed ID: 18187469 [TBL] [Abstract][Full Text] [Related]
10. Role of cyclic ADP-ribose in Ca2+-induced Ca2+ release and vasoconstriction in small renal arteries. Teggatz EG; Zhang G; Zhang AY; Yi F; Li N; Zou AP; Li PL Microvasc Res; 2005 Jul; 70(1-2):65-75. PubMed ID: 16095628 [TBL] [Abstract][Full Text] [Related]
11. Interaction between the sarcoplasmic reticulum and mitochondria in the control of contractile calcium in guinea-pig atria--does it exist? Prokopczuk A Acta Physiol Pol; 1990; 41(4-6):205-11. PubMed ID: 2136194 [TBL] [Abstract][Full Text] [Related]
12. Action potential prolongation in cardiac myocytes of old rats is an adaptation to sustain youthful intracellular Ca2+ regulation. Janczewski AM; Spurgeon HA; Lakatta EG J Mol Cell Cardiol; 2002 Jun; 34(6):641-8. PubMed ID: 12054851 [TBL] [Abstract][Full Text] [Related]
13. Permeability transition pore regulates both mitochondrial membrane potential and agonist-evoked Ca2+ signals in oligodendrocyte progenitors. Smaili SS; Russell JT Cell Calcium; 1999; 26(3-4):121-30. PubMed ID: 10598276 [TBL] [Abstract][Full Text] [Related]
14. Time course of action of antagonists of mitochondrial Ca uptake in intact ventricular myocytes. Zhou Z; Bers DM Pflugers Arch; 2002 Oct; 445(1):132-8. PubMed ID: 12397397 [TBL] [Abstract][Full Text] [Related]
15. Mesenteric lymph from rats with thermal injury prolongs the action potential and increases Ca2+ transient in rat ventricular myocytes. Yatani A; Xu DZ; Kim SJ; Vatner SF; Deitch EA Shock; 2003 Nov; 20(5):458-64. PubMed ID: 14560111 [TBL] [Abstract][Full Text] [Related]