BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 18375588)

  • 1. Multiscale and modular analysis of cardiac energy metabolism: repairing the broken interfaces of isolated system components.
    Van Beek JH
    Ann N Y Acad Sci; 2008 Mar; 1123():155-68. PubMed ID: 18375588
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Adenine nucleotide-creatine-phosphate module in myocardial metabolic system explains fast phase of dynamic regulation of oxidative phosphorylation.
    van Beek JH
    Am J Physiol Cell Physiol; 2007 Sep; 293(3):C815-29. PubMed ID: 17581855
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Is there the creatine kinase equilibrium in working heart cells?
    Saks VA; Aliev MK
    Biochem Biophys Res Commun; 1996 Oct; 227(2):360-7. PubMed ID: 8878521
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [The possible role of the inner mitochondrial membrane in regulating oxidative phosphorylation in cells in vivo].
    Vasil'eva EV; Belikova IuO; Liapina SA; Petrova LE; Kuznetsov AV; Perov NA; Clarke J; Saks VA
    Biokhimiia; 1993 Nov; 58(11):1742-54. PubMed ID: 8268311
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The creatine kinase energy transport system in the failing mouse heart.
    Lygate CA; Fischer A; Sebag-Montefiore L; Wallis J; ten Hove M; Neubauer S
    J Mol Cell Cardiol; 2007 Jun; 42(6):1129-36. PubMed ID: 17481652
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Metabolic control of contractile performance in isolated perfused rat heart. Analysis of experimental data by reaction:diffusion mathematical model.
    Dos Santos P; Aliev MK; Diolez P; Duclos F; Besse P; Bonoron-Adèle S; Sikk P; Canioni P; Saks VA
    J Mol Cell Cardiol; 2000 Sep; 32(9):1703-34. PubMed ID: 10966833
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Creatine kinase isoenzymes--characterization and functions in cell].
    Grzyb K; Skorkowski EF
    Postepy Biochem; 2008; 54(3):274-83. PubMed ID: 19112826
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Membrane-binding and lipid vesicle cross-linking kinetics of the mitochondrial creatine kinase octamer.
    Stachowiak O; Dolder M; Wallimann T
    Biochemistry; 1996 Dec; 35(48):15522-8. PubMed ID: 8952506
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Systems bioenergetics of creatine kinase networks: physiological roles of creatine and phosphocreatine in regulation of cardiac cell function.
    Guzun R; Timohhina N; Tepp K; Gonzalez-Granillo M; Shevchuk I; Chekulayev V; Kuznetsov AV; Kaambre T; Saks VA
    Amino Acids; 2011 May; 40(5):1333-48. PubMed ID: 21390528
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Interactions between heart mitochondrial creatine kinase and oxidative phosphorylation].
    Lipskaia TIu; Templ VD; Belousova LV; Molokova EV
    Biokhimiia; 1980 Aug; 45(8):1347-51. PubMed ID: 7236785
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mitochondrial affinity for ADP is twofold lower in creatine kinase knock-out muscles. Possible role in rescuing cellular energy homeostasis.
    ter Veld F; Jeneson JA; Nicolay K
    FEBS J; 2005 Feb; 272(4):956-65. PubMed ID: 15691329
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analyzing the functional properties of the creatine kinase system with multiscale 'sloppy' modeling.
    Hettling H; van Beek JH
    PLoS Comput Biol; 2011 Aug; 7(8):e1002130. PubMed ID: 21912519
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Acute myocardial ischaemia induces specific alterations of ventricular mitochondrial function in experimental pigs.
    Zoll J; Ponsot E; Doutreleau S; Mettauer B; Piquard F; Mazzucotelli JP; Diemunsch P; Geny B
    Acta Physiol Scand; 2005 Sep; 185(1):25-32. PubMed ID: 16128694
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Retarded diffusion of ADP in cardiomyocytes: possible role of mitochondrial outer membrane and creatine kinase in cellular regulation of oxidative phosphorylation.
    Saks VA; Vasil'eva E; Belikova YuO ; Kuznetsov AV; Lyapina S; Petrova L; Perov NA
    Biochim Biophys Acta; 1993 Sep; 1144(2):134-48. PubMed ID: 8396441
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The role of Ca2+ in coupling cardiac metabolism with regulation of contraction: in silico modeling.
    Yaniv Y; Stanley WC; Saidel GM; Cabrera ME; Landesberg A
    Ann N Y Acad Sci; 2008 Mar; 1123():69-78. PubMed ID: 18375579
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The fall in creatine levels and creatine kinase isozyme changes in the failing heart are reversible: complex post-transcriptional regulation of the components of the CK system.
    Shen W; Spindler M; Higgins MA; Jin N; Gill RM; Bloem LJ; Ryan TP; Ingwall JS
    J Mol Cell Cardiol; 2005 Sep; 39(3):537-44. PubMed ID: 15978613
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dextran strongly increases the Michaelis constants of oxidative phosphorylation and of mitochondrial creatine kinase in heart mitochondria.
    Gellerich FN; Laterveer FD; Korzeniewski B; Zierz S; Nicolay K
    Eur J Biochem; 1998 May; 254(1):172-80. PubMed ID: 9652411
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of mitoxantrone and doxorubicin on energy metabolism of the rat heart.
    Bachmann E; Weber E; Zbinden G
    Cancer Treat Rep; 1987 Apr; 71(4):361-6. PubMed ID: 3829012
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Heart rate reduction with ivabradine improves energy metabolism and mechanical function of isolated ischaemic rabbit heart.
    Ceconi C; Cargnoni A; Francolini G; Parinello G; Ferrari R
    Cardiovasc Res; 2009 Oct; 84(1):72-82. PubMed ID: 19477966
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cloning and expression of mitochondrial and protoflagellar creatine kinases from a marine sponge: implications for the origin of intracellular energy transport systems.
    Sona S; Suzuki T; Ellington WR
    Biochem Biophys Res Commun; 2004 May; 317(4):1207-14. PubMed ID: 15094398
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.