These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
284 related articles for article (PubMed ID: 18375620)
1. High resistance to oxidative stress in the fungal pathogen Candida glabrata is mediated by a single catalase, Cta1p, and is controlled by the transcription factors Yap1p, Skn7p, Msn2p, and Msn4p. Cuéllar-Cruz M; Briones-Martin-del-Campo M; Cañas-Villamar I; Montalvo-Arredondo J; Riego-Ruiz L; Castaño I; De Las Peñas A Eukaryot Cell; 2008 May; 7(5):814-25. PubMed ID: 18375620 [TBL] [Abstract][Full Text] [Related]
2. Skn7p is involved in oxidative stress response and virulence of Candida glabrata. Saijo T; Miyazaki T; Izumikawa K; Mihara T; Takazono T; Kosai K; Imamura Y; Seki M; Kakeya H; Yamamoto Y; Yanagihara K; Kohno S Mycopathologia; 2010 Feb; 169(2):81-90. PubMed ID: 19693686 [TBL] [Abstract][Full Text] [Related]
3. Oxidative stress response to menadione and cumene hydroperoxide in the opportunistic fungal pathogen Candida glabrata. Cuéllar-Cruz M; Castaño I; Arroyo-Helguera O; De Las Peñas A Mem Inst Oswaldo Cruz; 2009 Jul; 104(4):649-54. PubMed ID: 19722092 [TBL] [Abstract][Full Text] [Related]
4. A new regulator in the crossroads of oxidative stress resistance and virulence in Pais P; Vagueiro S; Mil-Homens D; Pimenta AI; Viana R; Okamoto M; Chibana H; Fialho AM; Teixeira MC Virulence; 2020 Dec; 11(1):1522-1538. PubMed ID: 33135521 [No Abstract] [Full Text] [Related]
12. Comparison of sterol import under aerobic and anaerobic conditions in three fungal species, Candida albicans, Candida glabrata, and Saccharomyces cerevisiae. Zavrel M; Hoot SJ; White TC Eukaryot Cell; 2013 May; 12(5):725-38. PubMed ID: 23475705 [TBL] [Abstract][Full Text] [Related]
14. STB5 is a negative regulator of azole resistance in Candida glabrata. Noble JA; Tsai HF; Suffis SD; Su Q; Myers TG; Bennett JE Antimicrob Agents Chemother; 2013 Feb; 57(2):959-67. PubMed ID: 23229483 [TBL] [Abstract][Full Text] [Related]
15. Glutathione biosynthesis in the yeast pathogens Candida glabrata and Candida albicans: essential in C. glabrata, and essential for virulence in C. albicans. Yadav AK; Desai PR; Rai MN; Kaur R; Ganesan K; Bachhawat AK Microbiology (Reading); 2011 Feb; 157(Pt 2):484-495. PubMed ID: 20966090 [TBL] [Abstract][Full Text] [Related]
16. Activity of Isavuconazole and Other Azoles against Candida Clinical Isolates and Yeast Model Systems with Known Azole Resistance Mechanisms. Sanglard D; Coste AT Antimicrob Agents Chemother; 2016 Jan; 60(1):229-38. PubMed ID: 26482310 [TBL] [Abstract][Full Text] [Related]
17. Differential response of Candida albicans and Candida glabrata to oxidative and nitrosative stresses. Cuéllar-Cruz M; López-Romero E; Ruiz-Baca E; Zazueta-Sandoval R Curr Microbiol; 2014 Nov; 69(5):733-9. PubMed ID: 25002360 [TBL] [Abstract][Full Text] [Related]
18. The CgHaa1-Regulon Mediates Response and Tolerance to Acetic Acid Stress in the Human Pathogen Candida glabrata. Bernardo RT; Cunha DV; Wang C; Pereira L; Silva S; Salazar SB; Schröder MS; Okamoto M; Takahashi-Nakaguchi A; Chibana H; Aoyama T; Sá-Correia I; Azeredo J; Butler G; Mira NP G3 (Bethesda); 2017 Jan; 7(1):1-18. PubMed ID: 27815348 [TBL] [Abstract][Full Text] [Related]
19. Inactivation of transcription factor gene ACE2 in the fungal pathogen Candida glabrata results in hypervirulence. Kamran M; Calcagno AM; Findon H; Bignell E; Jones MD; Warn P; Hopkins P; Denning DW; Butler G; Rogers T; Mühlschlegel FA; Haynes K Eukaryot Cell; 2004 Apr; 3(2):546-52. PubMed ID: 15075283 [TBL] [Abstract][Full Text] [Related]
20. Candida glabrata Ste11 is involved in adaptation to hypertonic stress, maintenance of wild-type levels of filamentation and plays a role in virulence. Calcagno AM; Bignell E; Rogers TR; Jones MD; Mühlschlegel FA; Haynes K Med Mycol; 2005 Jun; 43(4):355-64. PubMed ID: 16110782 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]