BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

244 related articles for article (PubMed ID: 18376643)

  • 1. An assessment of air emissions from liquefied natural gas ships using different power systems and different fuels.
    Afon Y; Ervin D
    J Air Waste Manag Assoc; 2008 Mar; 58(3):404-11. PubMed ID: 18376643
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Energy use and emissions from marine vessels: a total fuel life cycle approach.
    Winebrake JJ; Corbett JJ; Meyer PE
    J Air Waste Manag Assoc; 2007 Jan; 57(1):102-10. PubMed ID: 17269235
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effectiveness of emission control technologies for auxiliary engines on ocean-going vessels.
    Jayaram V; Nigam A; Welch WA; Miller JW; Cocker DR
    J Air Waste Manag Assoc; 2011 Jan; 61(1):14-21. PubMed ID: 21305884
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Impact of emission control areas on atmospheric pollutant emissions from major ocean-going ships entering the Shanghai Port, China.
    Wan Z; Zhang Q; Xu Z; Chen J; Wang Q
    Mar Pollut Bull; 2019 May; 142():525-532. PubMed ID: 31232333
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dilution-based emissions sampling from stationary sources: Part 2--Gas-fired combustors compared with other fuel-fired systems.
    England GC; Watson JG; Chow JC; Zielinska B; Chang MC; Loos KR; Hidy GM
    J Air Waste Manag Assoc; 2007 Jan; 57(1):79-93. PubMed ID: 17269233
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mitigating the health impacts of pollution from oceangoing shipping: an assessment of low-sulfur fuel mandates.
    Winebrake JJ; Corbett JJ; Green EH; Lauer A; Eyring V
    Environ Sci Technol; 2009 Jul; 43(13):4776-82. PubMed ID: 19673264
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Estimation of Shipping Emissions in Developing Country: A Case Study of Mohammad Bin Qasim Port, Pakistan.
    Hussain I; Wang H; Safdar M; Ho QB; Wemegah TD; Noor S
    Int J Environ Res Public Health; 2022 Sep; 19(19):. PubMed ID: 36231164
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A review of NOx and SOx emission reduction technologies for marine diesel engines and the potential evaluation of liquefied natural gas fuelled vessels.
    Deng J; Wang X; Wei Z; Wang L; Wang C; Chen Z
    Sci Total Environ; 2021 Apr; 766():144319. PubMed ID: 33421776
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Particle- and Gaseous Emissions from an LNG Powered Ship.
    Anderson M; Salo K; Fridell E
    Environ Sci Technol; 2015 Oct; 49(20):12568-75. PubMed ID: 26422536
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of switching to lower sulfur marine fuel oil on air quality in the San Francisco Bay area.
    Tao L; Fairley D; Kleeman MJ; Harley RA
    Environ Sci Technol; 2013 Sep; 47(18):10171-8. PubMed ID: 23944938
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Numerical analysis of economic and environmental benefits of marine fuel conversion from diesel oil to natural gas for container ships.
    Elkafas AG; Elgohary MM; Shouman MR
    Environ Sci Pollut Res Int; 2021 Mar; 28(12):15210-15222. PubMed ID: 33236307
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Climate impact of biofuels in shipping: global model studies of the aerosol indirect effect.
    Righi M; Klinger C; Eyring V; Hendricks J; Lauer A; Petzold A
    Environ Sci Technol; 2011 Apr; 45(8):3519-25. PubMed ID: 21428387
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Combustion in the future: The importance of chemistry.
    Kohse-Höinghaus K
    Proc Combust Inst; 2020 Sep; ():. PubMed ID: 33013234
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Primary particulate matter from ocean-going engines in the Southern California Air Basin.
    Agrawal H; Eden R; Zhang X; Fine PM; Katzenstein A; Miller JW; Ospital J; Teffera S; Cocker DR
    Environ Sci Technol; 2009 Jul; 43(14):5398-402. PubMed ID: 19708372
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluation of Methane Emissions Originating from LNG Ships Based on the Measurements at a Remote Marine Station.
    Grönholm T; Mäkelä T; Hatakka J; Jalkanen JP; Kuula J; Laurila T; Laakso L; Kukkonen J
    Environ Sci Technol; 2021 Oct; 55(20):13677-13686. PubMed ID: 34623135
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The London low emission zone baseline study.
    Kelly F; Armstrong B; Atkinson R; Anderson HR; Barratt B; Beevers S; Cook D; Green D; Derwent D; Mudway I; Wilkinson P;
    Res Rep Health Eff Inst; 2011 Nov; (163):3-79. PubMed ID: 22315924
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Demonstration of fuel switching on oceangoing vessels in the Gulf of Mexico.
    Browning L; Hartley S; Bandemehr A; Gathright K; Miller W
    J Air Waste Manag Assoc; 2012 Sep; 62(9):1093-101. PubMed ID: 23019823
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Particle emissions from ships: dependence on fuel type.
    Winnes H; Fridell E
    J Air Waste Manag Assoc; 2009 Dec; 59(12):1391-8. PubMed ID: 20066904
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Operation of marine diesel engines on biogenic fuels: modification of emissions and resulting climate effects.
    Petzold A; Lauer P; Fritsche U; Hasselbach J; Lichtenstern M; Schlager H; Fleischer F
    Environ Sci Technol; 2011 Dec; 45(24):10394-400. PubMed ID: 22044020
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Total fuel-cycle analysis of heavy-duty vehicles using biofuels and natural gas-based alternative fuels.
    Meyer PE; Green EH; Corbett JJ; Mas C; Winebrake JJ
    J Air Waste Manag Assoc; 2011 Mar; 61(3):285-94. PubMed ID: 21416755
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.