These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

83 related articles for article (PubMed ID: 18376887)

  • 1. A multifaceted approach to the interpretation of NMR order parameters: a case study of a dynamic alpha-helix.
    Johnson E; Showalter SA; Brüschweiler R
    J Phys Chem B; 2008 May; 112(19):6203-10. PubMed ID: 18376887
    [TBL] [Abstract][Full Text] [Related]  

  • 2. DNA duplex dynamics: NMR relaxation studies of a decamer with uniformly 13C-labeled purine nucleotides.
    Kojima C; Ono A; Kainosho M; James TL
    J Magn Reson; 1998 Dec; 135(2):310-33. PubMed ID: 9878461
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Estimation of dynamic parameters from NMR relaxation data using the Lipari-Szabo model-free approach and Bayesian statistical methods.
    Andrec M; Montelione GT; Levy RM
    J Magn Reson; 1999 Aug; 139(2):408-21. PubMed ID: 10423379
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Determination of the backbone mobility of ribonuclease T1 and its 2'GMP complex using molecular dynamics simulations and NMR relaxation data.
    Fushman D; Ohlenschläger O; Rüterjans H
    J Biomol Struct Dyn; 1994 Jun; 11(6):1377-402. PubMed ID: 7946080
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Beyond the decoupling approximation in the model free approach for the interpretation of NMR relaxation of macromolecules in solution.
    Vugmeyster L; Raleigh DP; Palmer AG; Vugmeister BE
    J Am Chem Soc; 2003 Jul; 125(27):8400-4. PubMed ID: 12837113
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Set theory formulation of the model-free problem and the diffusion seeded model-free paradigm.
    d'Auvergne EJ; Gooley PR
    Mol Biosyst; 2007 Jul; 3(7):483-94. PubMed ID: 17579774
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Predicting internal protein dynamics from structures using coupled networks of hindered rotators.
    Abergel D; Bodenhausen G
    J Chem Phys; 2005 Nov; 123(20):204901. PubMed ID: 16351311
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analytical solution to the Lipari-Szabo model based on the reduced spectral density approximation offers a novel protocol for extracting motional parameters.
    Renner C; Moroder L; Holak TA
    J Magn Reson; 2001 Jul; 151(1):32-9. PubMed ID: 11444934
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Isotropic reorientational eigenmode dynamics complements NMR relaxation measurements for RNA.
    Showalter SA; Hall KB
    Methods Enzymol; 2005; 394():465-80. PubMed ID: 15808233
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A new approach to visualizing spectral density functions and deriving motional correlation time distributions: applications to an alpha-helix-forming peptide and to a well-folded protein.
    Idiyatullin D; Daragan VA; Mayo KH
    J Magn Reson; 2001 Sep; 152(1):132-48. PubMed ID: 11531372
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Determination of protein structures consistent with NMR order parameters.
    Best RB; Vendruscolo M
    J Am Chem Soc; 2004 Jul; 126(26):8090-1. PubMed ID: 15225030
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Repeat motions and backbone flexibility in designed proteins with different numbers of identical consensus tetratricopeptide repeats.
    Cheng CY; Jarymowycz VA; Cortajarena AL; Regan L; Stone MJ
    Biochemistry; 2006 Oct; 45(39):12175-83. PubMed ID: 17002317
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Temperature dependence of the NMR generalized order parameter.
    Johnson E; Palmer AG; Rance M
    Proteins; 2007 Mar; 66(4):796-803. PubMed ID: 17173286
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The improvement of the algorithm for order parameter calculation (S2) from molecular dynamics simulation using the correlation motion function.
    Dubyna VM; Kovalskyy DB; Ivanova OS; Kornelyuk AI
    Biophys Chem; 2006 Aug; 123(1):25-8. PubMed ID: 16698173
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hydrodynamic models and computational methods for NMR relaxation.
    García de la Torre J; Bernadó P; Pons M
    Methods Enzymol; 2005; 394():419-30. PubMed ID: 15808231
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Simulation of NMR data reveals that proteins' local structures are stabilized by electronic polarization.
    Tong Y; Ji CG; Mei Y; Zhang JZ
    J Am Chem Soc; 2009 Jun; 131(24):8636-41. PubMed ID: 19485377
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Manifestation of intramolecular motions on pico- and nanosecond time scales in (1)H- (15)N NMR relaxation: Analysis of dynamic models of one- and two-helical subunits of bacterioopsin.
    Pervushin KV; Orekhov VY; Korzhnev DM; Arseniev AS
    J Biomol NMR; 1995 Jun; 5(4):383-96. PubMed ID: 22911558
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interpreting experimental data by using molecular simulation instead of model building.
    Gattin Z; Schwartz J; Mathad RI; Jaun B; van Gunsteren WF
    Chemistry; 2009 Jun; 15(26):6389-98. PubMed ID: 19462385
    [TBL] [Abstract][Full Text] [Related]  

  • 19. New modification of model-free approach to analysis of nuclear magnetic relaxation data in proteins.
    Fedotov VD; Kivayeva LS
    J Biomol Struct Dyn; 1987 Feb; 4(4):599-619. PubMed ID: 3078233
    [TBL] [Abstract][Full Text] [Related]  

  • 20. 13C NMR studies of the molecular dynamics of selectively 13C-enriched ribonuclease complexes.
    Hughes LT; Cohen JS; Szabo A; Niu C; Matsuura S
    Biochemistry; 1984 Sep; 23(19):4390-4. PubMed ID: 6487607
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.