These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

495 related articles for article (PubMed ID: 18376909)

  • 1. Poisson-transformed density fitting in relativistic four-component Dirac-Kohn-Sham theory.
    Belpassi L; Tarantelli F; Sgamellotti A; Quiney HM
    J Chem Phys; 2008 Mar; 128(12):124108. PubMed ID: 18376909
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electron density fitting for the Coulomb problem in relativistic density-functional theory.
    Belpassi L; Tarantelli F; Sgamellotti A; Quiney HM
    J Chem Phys; 2006 Mar; 124(12):124104. PubMed ID: 16599659
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Efficient treatment of the Hartree interaction in the relativistic Kohn-Sham problem.
    Matveev AV; Majumder S; Rösch N
    J Chem Phys; 2005 Oct; 123(16):164104. PubMed ID: 16268678
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Computational strategies for a four-component Dirac-Kohn-Sham program: implementation and first applications.
    Belpassi L; Tarantelli F; Sgamellotti A; Quiney HM
    J Chem Phys; 2005 May; 122(18):184109. PubMed ID: 15918696
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Resolution of identity Dirac-Kohn-Sham method using the large component only: Calculations of g-tensor and hyperfine tensor.
    Komorovský S; Repiský M; Malkina OL; Malkin VG; Malkin I; Kaupp M
    J Chem Phys; 2006 Feb; 124(8):084108. PubMed ID: 16512709
    [TBL] [Abstract][Full Text] [Related]  

  • 6. PyBERTHART: A Relativistic Real-Time Four-Component TDDFT Implementation Using Prototyping Techniques Based on Python.
    De Santis M; Storchi L; Belpassi L; Quiney HM; Tarantelli F
    J Chem Theory Comput; 2020 Apr; 16(4):2410-2429. PubMed ID: 32101419
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Large-scale Dirac-Fock-Breit method using density fitting and 2-spinor basis functions.
    Kelley MS; Shiozaki T
    J Chem Phys; 2013 May; 138(20):204113. PubMed ID: 23742460
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The electronic structure of alkali aurides. A four-component Dirac-Kohn-Sham study.
    Belpassi L; Tarantelli F; Sgamellotti A; Quiney HM
    J Phys Chem A; 2006 Apr; 110(13):4543-54. PubMed ID: 16571062
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fast computation of molecular random phase approximation correlation energies using resolution of the identity and imaginary frequency integration.
    Eshuis H; Yarkony J; Furche F
    J Chem Phys; 2010 Jun; 132(23):234114. PubMed ID: 20572696
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Four-component relativistic Kohn-Sham theory.
    Saue T; Helgaker T
    J Comput Chem; 2002 Jun; 23(8):814-23. PubMed ID: 12012358
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Atomic Cholesky decompositions: a route to unbiased auxiliary basis sets for density fitting approximation with tunable accuracy and efficiency.
    Aquilante F; Gagliardi L; Pedersen TB; Lindh R
    J Chem Phys; 2009 Apr; 130(15):154107. PubMed ID: 19388736
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Recent advances and perspectives in four-component Dirac-Kohn-Sham calculations.
    Belpassi L; Storchi L; Quiney HM; Tarantelli F
    Phys Chem Chem Phys; 2011 Jul; 13(27):12368-94. PubMed ID: 21670843
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Efficient solution of Poisson's equation using discrete variable representation basis sets for Car-Parrinello ab initio molecular dynamics simulations with cluster boundary conditions.
    Lee HS; Tuckerman ME
    J Chem Phys; 2008 Dec; 129(22):224108. PubMed ID: 19071908
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Relativistic two-component formulation of time-dependent current-density functional theory: application to the linear response of solids.
    Romaniello P; de Boeij PL
    J Chem Phys; 2007 Nov; 127(17):174111. PubMed ID: 17994811
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Infinite-order quasirelativistic density functional method based on the exact matrix quasirelativistic theory.
    Liu W; Peng D
    J Chem Phys; 2006 Jul; 125(4):44102. PubMed ID: 16942129
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Second-order Kohn-Sham perturbation theory: correlation potential for atoms in a cavity.
    Jiang H; Engel E
    J Chem Phys; 2005 Dec; 123(22):224102. PubMed ID: 16375465
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A closed-shell coupled-cluster treatment of the Breit-Pauli first-order relativistic energy correction.
    Coriani S; Helgaker T; Jørgensen P; Klopper W
    J Chem Phys; 2004 Oct; 121(14):6591-8. PubMed ID: 15473713
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A fully relativistic method for calculation of nuclear magnetic shielding tensors with a restricted magnetically balanced basis in the framework of the matrix Dirac-Kohn-Sham equation.
    Komorovský S; Repiský M; Malkina OL; Malkin VG; Malkin Ondík I; Kaupp M
    J Chem Phys; 2008 Mar; 128(10):104101. PubMed ID: 18345871
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A direct relativistic four-component multiconfiguration self-consistent-field method for molecules.
    Thyssen J; Fleig T; Jensen HJ
    J Chem Phys; 2008 Jul; 129(3):034109. PubMed ID: 18647018
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An Efficient Parallel All-Electron Four-Component Dirac-Kohn-Sham Program Using a Distributed Matrix Approach.
    Storchi L; Belpassi L; Tarantelli F; Sgamellotti A; Quiney HM
    J Chem Theory Comput; 2010 Feb; 6(2):384-94. PubMed ID: 26617297
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 25.