These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

97 related articles for article (PubMed ID: 18377015)

  • 1. Sensitivity optimization of the scanning microdeformation microscope and application to mechanical characterization of soft materials.
    Le Rouzic J; Vairac P; Cretin B; Delobelle P
    Rev Sci Instrum; 2008 Mar; 79(3):033707. PubMed ID: 18377015
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Study of the sensitivity of the first four flexural modes of an AFM cantilever with a sidewall probe.
    Chang WJ; Lee HL; Chen TY
    Ultramicroscopy; 2008 Jun; 108(7):619-24. PubMed ID: 18037563
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Coupled lateral bending-torsional vibration sensitivity of atomic force microscope cantilever.
    Lee HL; Chang WJ
    Ultramicroscopy; 2008 Jul; 108(8):707-11. PubMed ID: 18054438
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Local dynamic mechanical analysis.
    Foschia R; Jobin M; Hengsberger S
    Micron; 2009 Jan; 40(1):51-5. PubMed ID: 18462945
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Vibration sensitivity of the scanning near-field optical microscope with a tapered optical fiber probe.
    Chang WJ; Fang TH; Lee HL; Yang YC
    Ultramicroscopy; 2005 Jan; 102(2):85-92. PubMed ID: 15590131
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sensitivity of flexural vibration mode of the rectangular atomic force microscope micro cantilevers in liquid to the surface stiffness variations.
    Farokh Payam A
    Ultramicroscopy; 2013 Dec; 135():84-8. PubMed ID: 23942312
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Micromechanical contact stiffness devices and application for calibrating contact resonance atomic force microscopy.
    Rosenberger MR; Chen S; Prater CB; King WP
    Nanotechnology; 2017 Jan; 28(4):044003. PubMed ID: 28000611
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modeling and characterization of a cantilever-based near-field scanning microwave impedance microscope.
    Lai K; Kundhikanjana W; Kelly M; Shen ZX
    Rev Sci Instrum; 2008 Jun; 79(6):063703. PubMed ID: 18601409
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Measurement of viscoelastic properties from the vibration of a compliantly supported beam.
    Park J; Lee J; Park J
    J Acoust Soc Am; 2011 Dec; 130(6):3729-35. PubMed ID: 22225029
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The elastic moduli of oriented tin oxide nanowires.
    Barth S; Harnagea C; Mathur S; Rosei F
    Nanotechnology; 2009 Mar; 20(11):115705. PubMed ID: 19420453
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Probing near-surface nanoscale mechanical properties of low modulus materials using a quartz crystal resonator atomic force microscope.
    Kong YP; Chen L; Yee AF
    Nanotechnology; 2011 Jul; 22(29):295709. PubMed ID: 21685557
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Piezoelectric sensor applied in ultrasonic contact microscopy for the investigation of material surfaces.
    Kielczynski P; Pajewski W; Szalewski M
    IEEE Trans Ultrason Ferroelectr Freq Control; 1999; 46(1):233-8. PubMed ID: 18238418
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The influence of Young's modulus of loaded implants on bone remodeling: an experimental and numerical study in the goat knee.
    Stoppie N; Van Oosterwyck H; Jansen J; Wolke J; Wevers M; Naert I
    J Biomed Mater Res A; 2009 Sep; 90(3):792-803. PubMed ID: 18615463
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Low-force AFM nanomechanics with higher-eigenmode contact resonance spectroscopy.
    Killgore JP; Hurley DC
    Nanotechnology; 2012 Feb; 23(5):055702. PubMed ID: 22236758
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High-frequency micromechanical resonators from aluminium-carbon nanotube nanolaminates.
    Bak JH; Kim YD; Hong SS; Lee BY; Lee SR; Jang JH; Kim M; Char K; Hong S; Park YD
    Nat Mater; 2008 Jun; 7(6):459-63. PubMed ID: 18425133
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dose and energy dependence of mechanical properties of focused electron-beam-induced pillar deposits from Cu(C5HF6O2)2.
    Friedli V; Utke I; Mølhave K; Michler J
    Nanotechnology; 2009 Sep; 20(38):385304. PubMed ID: 19713594
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of anisotropic material property on the spring constant and the resonant frequency of atomic force microscope cantilever.
    Yeh MK; Tai NH; Chen BY
    Rev Sci Instrum; 2009 Apr; 80(4):043705. PubMed ID: 19405664
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spatial orientation in bone samples and Young's modulus.
    Geraets WG; van Ruijven LJ; Verheij JG; van der Stelt PF; van Eijden TM
    J Biomech; 2008 Jul; 41(10):2206-10. PubMed ID: 18539283
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ultrasonic determination of Young's moduli of the coat and core materials of a drug tablet.
    Akseli I; Becker DC; Cetinkaya C
    Int J Pharm; 2009 Mar; 370(1-2):17-25. PubMed ID: 19059326
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The relationship between Shore hardness of elastomeric dental materials and Young's modulus.
    Meththananda IM; Parker S; Patel MP; Braden M
    Dent Mater; 2009 Aug; 25(8):956-9. PubMed ID: 19286248
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.