These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

75 related articles for article (PubMed ID: 18377018)

  • 1. Three-dimensional shape optical measurement using constant gap control and error compensation.
    Park K; Choi K; Kim S
    Rev Sci Instrum; 2008 Mar; 79(3):033710. PubMed ID: 18377018
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Smart agile lens remote optical sensor for three-dimensional object shape measurements.
    Riza NA; Reza SA
    Appl Opt; 2010 Mar; 49(7):1139-50. PubMed ID: 20197811
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Three dimensional shape measurement of teeth. (5) On the measurement by the newly developed double sensor laser displacement meter].
    Kimura H; Sohmura T; Watanabe T
    Shika Zairyo Kikai; 1990 Mar; 9(2):295-300. PubMed ID: 2135521
    [TBL] [Abstract][Full Text] [Related]  

  • 4. One-dimensional single-mode fiber-optic displacement sensors for submillimeter measurements.
    Trudel V; St-Amant Y
    Appl Opt; 2009 Sep; 48(26):4851-7. PubMed ID: 19745844
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optical calibration for both out-of-plane and in-plane displacement sensitivity of acoustic emission sensors.
    Theobald PD
    Ultrasonics; 2009 Dec; 49(8):623-7. PubMed ID: 19409592
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Note: Optical and electronic design of an amplitude-modulated continuous-wave laser scanner for high-accuracy distance measurement.
    Jang J; Hwang S; Park K
    Rev Sci Instrum; 2015 Apr; 86(4):046104. PubMed ID: 25933902
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phase error compensation for three-dimensional shape measurement with projector defocusing.
    Xu Y; Ekstrand L; Dai J; Zhang S
    Appl Opt; 2011 Jun; 50(17):2572-81. PubMed ID: 21673758
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Technique for designing and evaluating probe caps used in optical topography of infants using a real head model based on three dimensional magnetic resonance images.
    Hirabayashi Y; Sato H; Uchida-Ota M; Nakai A; Maki A
    Rev Sci Instrum; 2008 Jun; 79(6):066106. PubMed ID: 18601442
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Potentiality of 3D laser profilometry to determine the sequence of homogenous crossing lines on questioned documents.
    Spagnolo GS
    Forensic Sci Int; 2006 Dec; 164(2-3):102-9. PubMed ID: 16431054
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Feedback control of thermal lensing in a high optical power cavity.
    Fan Y; Zhao C; Degallaix J; Ju L; Blair DG; Slagmolen BJ; Hosken DJ; Brooks AF; Veitch PJ; Munch J
    Rev Sci Instrum; 2008 Oct; 79(10):104501. PubMed ID: 19044736
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An Improved Measurement Method for the Strength of Radiation of Reflective Beam in an Industrial Optical Sensor Based on Laser Displacement Meter.
    Bae Y
    Sensors (Basel); 2016 May; 16(5):. PubMed ID: 27223291
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Noncontact distance sensor using spatial signal processing.
    Riza NA; Reza SA
    Opt Lett; 2009 Feb; 34(4):434-6. PubMed ID: 19373332
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Three-dimensional laser imaging as a valuable tool for specifying changes in breast shape after augmentation mammaplasty.
    Esme DL; Bucksch A; Beekman WH
    Aesthetic Plast Surg; 2009 Mar; 33(2):191-5. PubMed ID: 18982384
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Flexible dynamic measurement method of three-dimensional surface profilometry based on multiple vision sensors.
    Liu Z; Li X; Li F; Zhang G
    Opt Express; 2015 Jan; 23(1):384-400. PubMed ID: 25835684
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The image of motor units architecture in the mechanomyographic signal during the single motor unit contraction: in vivo and simulation study.
    Kaczmarek P; Celichowski J; Drzymała-Celichowska H; Kasiński A
    J Electromyogr Kinesiol; 2009 Aug; 19(4):553-63. PubMed ID: 18455438
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Neural network based surface shape modeling of stressed lap optical polishing.
    Chen MY; Feng YT; Wan YJ; Li Y; Fan B
    Appl Opt; 2010 Mar; 49(8):1350-4. PubMed ID: 20220891
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Partial compensation interferometry measurement system for parameter errors of conicoid surface.
    Hao Q; Li T; Hu Y; Wang S; Ning Y; Chen Z
    Rev Sci Instrum; 2018 Jun; 89(6):063102. PubMed ID: 29960539
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spatially variant regularization of lateral displacement measurement using variance.
    Sumi C; Itoh T
    Ultrasonics; 2009 May; 49(4-5):459-65. PubMed ID: 19155036
    [TBL] [Abstract][Full Text] [Related]  

  • 19. New versatile and linear optical sensor based on electro-optical modulation and compensation.
    Claverie R; Salvestrini JP; Fontana MD; Ney P
    Rev Sci Instrum; 2008 Dec; 79(12):123103. PubMed ID: 19123541
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A minimally invasive displacement sensor for measuring brain micromotion in 3D with nanometer scale resolution.
    Vähäsöyrinki M; Tuukkanen T; Sorvoja H; Pudas M
    J Neurosci Methods; 2009 Jun; 180(2):290-5. PubMed ID: 19379772
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.