These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
166 related articles for article (PubMed ID: 18377072)
1. Breaking a chaotic secure communication scheme. Jinfeng H; Jingbo G Chaos; 2008 Mar; 18(1):013121. PubMed ID: 18377072 [TBL] [Abstract][Full Text] [Related]
2. Breaking a chaotic direct sequence spread spectrum communication system using interacting multiple model-unscented Kalman filter. Lu G; Bo X Chaos; 2012 Dec; 22(4):043122. PubMed ID: 23278057 [TBL] [Abstract][Full Text] [Related]
3. Breaking a chaos-noise-based secure communication scheme. Li S; Alvarez G; Chen G; Mou X Chaos; 2005 Mar; 15(1):13703. PubMed ID: 15836271 [TBL] [Abstract][Full Text] [Related]
4. New communication schemes based on adaptive synchronization. Yu W; Cao J; Wong KW; Lü J Chaos; 2007 Sep; 17(3):033114. PubMed ID: 17902996 [TBL] [Abstract][Full Text] [Related]
5. Adaptive synchronization of a switching system and its applications to secure communications. Xia W; Cao J Chaos; 2008 Jun; 18(2):023128. PubMed ID: 18601495 [TBL] [Abstract][Full Text] [Related]
6. A new chaotic communication scheme based on adaptive synchronization. Xiang-Jun W Chaos; 2006 Dec; 16(4):043118. PubMed ID: 17199396 [TBL] [Abstract][Full Text] [Related]
7. Breaking a secure communication scheme based on the phase synchronization of chaotic systems. Alvarez G; Montoya F; Pastor G; Romera M Chaos; 2004 Jun; 14(2):274-8. PubMed ID: 15189055 [TBL] [Abstract][Full Text] [Related]
9. Cryptanalysis of a chaotic communication scheme using adaptive observer. Liu Y; Tang WK Chaos; 2008 Dec; 18(4):043110. PubMed ID: 19123620 [TBL] [Abstract][Full Text] [Related]
10. Chaotic digital communication by encoding initial conditions. Xiaofeng G; Xingang W; Meng Z; Lai CH Chaos; 2004 Jun; 14(2):358-63. PubMed ID: 15189063 [TBL] [Abstract][Full Text] [Related]
11. Digital signal transmission with cascaded heterogeneous chaotic systems. Murali K Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Jan; 63(1 Pt 2):016217. PubMed ID: 11304345 [TBL] [Abstract][Full Text] [Related]
12. Chaotic signal detection and estimation based on attractor sets: applications to secure communications. Rohde GK; Nichols JM; Bucholtz F Chaos; 2008 Mar; 18(1):013114. PubMed ID: 18377065 [TBL] [Abstract][Full Text] [Related]
13. A secure communication scheme based on the phase synchronization of chaotic systems. Chen JY; Wong KW; Cheng LM; Shuai JW Chaos; 2003 Jun; 13(2):508-14. PubMed ID: 12777114 [TBL] [Abstract][Full Text] [Related]
14. Ergodic chaos-based communication schemes. Leung H; Yu H; Murali K Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Sep; 66(3 Pt 2A):036203. PubMed ID: 12366220 [TBL] [Abstract][Full Text] [Related]
15. Communicating with noise: How chaos and noise combine to generate secure encryption keys. Minai AA; Pandian TD Chaos; 1998 Sep; 8(3):621-628. PubMed ID: 12779766 [TBL] [Abstract][Full Text] [Related]
17. Finite-time stochastic combination synchronization of three different chaotic systems and its application in secure communication. Runzi L; Yinglan W Chaos; 2012 Jun; 22(2):023109. PubMed ID: 22757516 [TBL] [Abstract][Full Text] [Related]
18. On-line adaptive chaotic demodulator based on radial-basis-function neural networks. Feng JC; Tse CK Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Feb; 63(2 Pt 2):026202. PubMed ID: 11308553 [TBL] [Abstract][Full Text] [Related]
19. High-performance multimedia encryption system based on chaos. Hasimoto-Beltrán R Chaos; 2008 Jun; 18(2):023110. PubMed ID: 18601477 [TBL] [Abstract][Full Text] [Related]