These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

811 related articles for article (PubMed ID: 18377094)

  • 1. Sparsely synchronized neuronal oscillations.
    Brunel N; Hakim V
    Chaos; 2008 Mar; 18(1):015113. PubMed ID: 18377094
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Contributions of intrinsic membrane dynamics to fast network oscillations with irregular neuronal discharges.
    Geisler C; Brunel N; Wang XJ
    J Neurophysiol; 2005 Dec; 94(6):4344-61. PubMed ID: 16093332
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Clustering behaviors in networks of integrate-and-fire oscillators.
    Mauroy A; Sepulchre R
    Chaos; 2008 Sep; 18(3):037122. PubMed ID: 19045496
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A network of electronic neural oscillators reproduces the dynamics of the periodically forced pyloric pacemaker group.
    Denker M; Szücs A; Pinto RD; Abarbanel HD; Selverston AI
    IEEE Trans Biomed Eng; 2005 May; 52(5):792-8. PubMed ID: 15887528
    [TBL] [Abstract][Full Text] [Related]  

  • 5. How noise affects the synchronization properties of recurrent networks of inhibitory neurons.
    Brunel N; Hansel D
    Neural Comput; 2006 May; 18(5):1066-110. PubMed ID: 16595058
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synchronized state of coupled dynamics on time-varying networks.
    Amritkar RE; Hu CK
    Chaos; 2006 Mar; 16(1):015117. PubMed ID: 16599783
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synchronization in networks with random interactions: theory and applications.
    Feng J; Jirsa VK; Ding M
    Chaos; 2006 Mar; 16(1):015109. PubMed ID: 16599775
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Global point dissipativity of neural networks with mixed time-varying delays.
    Cao J; Yuan K; Ho DW; Lam J
    Chaos; 2006 Mar; 16(1):013105. PubMed ID: 16599736
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Introduction: stability and pattern formation in networks of dynamical systems.
    Boccaletti S; Pecora LM
    Chaos; 2006 Mar; 16(1):015101. PubMed ID: 16599767
    [No Abstract]   [Full Text] [Related]  

  • 10. Spike-rate adaptation and neuronal bursting in a mean-field model of brain activity.
    Loxley PN; Robinson PA
    Biol Cybern; 2007 Aug; 97(2):113-22. PubMed ID: 17473929
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Revealing direction of coupling between neuronal oscillators from time series: phase dynamics modeling versus partial directed coherence.
    Smirnov D; Schelter B; Winterhalder M; Timmer J
    Chaos; 2007 Mar; 17(1):013111. PubMed ID: 17411247
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In phase and antiphase synchronization of coupled homoclinic chaotic oscillators.
    Leyva I; Allaria E; Boccaletti S; Arecchi FT
    Chaos; 2004 Mar; 14(1):118-22. PubMed ID: 15003051
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pinning control of threshold coupled chaotic neuronal maps.
    Shrimali MD
    Chaos; 2009 Sep; 19(3):033105. PubMed ID: 19791985
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synchronizabilities of networks: a new index.
    Yang H; Zhao F; Wang B
    Chaos; 2006 Dec; 16(4):043112. PubMed ID: 17199390
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Emergence of chaotic attractor and anti-synchronization for two coupled monostable neurons.
    Courbage M; Kazantsev VB; Nekorkin VI; Senneret M
    Chaos; 2004 Dec; 14(4):1148-56. PubMed ID: 15568928
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bifurcation of synchronous oscillations into torus in a system of two reciprocally inhibitory silicon neurons: experimental observation and modeling.
    Bondarenko VE; Cymbalyuk GS; Patel G; Deweerth SP; Calabrese RL
    Chaos; 2004 Dec; 14(4):995-1003. PubMed ID: 15568913
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Coordinate transformation and matrix measure approach for synchronization of complex networks.
    Juang J; Liang YH
    Chaos; 2009 Sep; 19(3):033131. PubMed ID: 19792011
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Speed of synchronization in complex networks of neural oscillators: analytic results based on Random Matrix Theory.
    Timme M; Geisel T; Wolf F
    Chaos; 2006 Mar; 16(1):015108. PubMed ID: 16599774
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Network reorganization driven by temporal interdependence of its elements.
    Waddell J; Zochowski M
    Chaos; 2006 Jun; 16(2):023106. PubMed ID: 16822009
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A "cellular neuronal" approach to optimization problems.
    Duane GS
    Chaos; 2009 Sep; 19(3):033114. PubMed ID: 19791994
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 41.