BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

246 related articles for article (PubMed ID: 18377657)

  • 1. Reduced reliance on the trace element selenium during evolution of mammals.
    Lobanov AV; Hatfield DL; Gladyshev VN
    Genome Biol; 2008; 9(3):R62. PubMed ID: 18377657
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Regulation of Selenocysteine Content of Human Selenoprotein P by Dietary Selenium and Insertion of Cysteine in Place of Selenocysteine.
    Turanov AA; Everley RA; Hybsier S; Renko K; Schomburg L; Gygi SP; Hatfield DL; Gladyshev VN
    PLoS One; 2015; 10(10):e0140353. PubMed ID: 26452064
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Selenium metabolism in zebrafish: multiplicity of selenoprotein genes and expression of a protein containing 17 selenocysteine residues.
    Kryukov GV; Gladyshev VN
    Genes Cells; 2000 Dec; 5(12):1049-60. PubMed ID: 11168591
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Composition and evolution of the vertebrate and mammalian selenoproteomes.
    Mariotti M; Ridge PG; Zhang Y; Lobanov AV; Pringle TH; Guigo R; Hatfield DL; Gladyshev VN
    PLoS One; 2012; 7(3):e33066. PubMed ID: 22479358
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dynamic evolution of selenocysteine utilization in bacteria: a balance between selenoprotein loss and evolution of selenocysteine from redox active cysteine residues.
    Zhang Y; Romero H; Salinas G; Gladyshev VN
    Genome Biol; 2006; 7(10):R94. PubMed ID: 17054778
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Four selenoprotein P genes exist in salmonids: Analysis of their origin and expression following Se supplementation and bacterial infection.
    Pohl MAN; Wang T; Pohl T; Sweetman J; Martin SAM; Secombes CJ
    PLoS One; 2018; 13(12):e0209381. PubMed ID: 30571741
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Different catalytic mechanisms in mammalian selenocysteine- and cysteine-containing methionine-R-sulfoxide reductases.
    Kim HY; Gladyshev VN
    PLoS Biol; 2005 Dec; 3(12):e375. PubMed ID: 16262444
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Low exchangeability of selenocysteine, the 21st amino acid, in vertebrate proteins.
    Castellano S; Andrés AM; Bosch E; Bayes M; Guigó R; Clark AG
    Mol Biol Evol; 2009 Sep; 26(9):2031-40. PubMed ID: 19487332
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Regulation of selenocysteine incorporation into the selenium transport protein, selenoprotein P.
    Shetty SP; Shah R; Copeland PR
    J Biol Chem; 2014 Sep; 289(36):25317-26. PubMed ID: 25063811
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evolutionary dynamics of eukaryotic selenoproteomes: large selenoproteomes may associate with aquatic life and small with terrestrial life.
    Lobanov AV; Fomenko DE; Zhang Y; Sengupta A; Hatfield DL; Gladyshev VN
    Genome Biol; 2007; 8(9):R198. PubMed ID: 17880704
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Selenoproteins-What unique properties can arise with selenocysteine in place of cysteine?
    Arnér ES
    Exp Cell Res; 2010 May; 316(8):1296-303. PubMed ID: 20206159
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Trends in selenium utilization in marine microbial world revealed through the analysis of the global ocean sampling (GOS) project.
    Zhang Y; Gladyshev VN
    PLoS Genet; 2008 Jun; 4(6):e1000095. PubMed ID: 18551170
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Processive Recoding and Metazoan Evolution of Selenoprotein P: Up to 132 UGAs in Molluscs.
    Baclaocos J; Santesmasses D; Mariotti M; Bierła K; Vetick MB; Lynch S; McAllen R; Mackrill JJ; Loughran G; Guigó R; Szpunar J; Copeland PR; Gladyshev VN; Atkins JF
    J Mol Biol; 2019 Nov; 431(22):4381-4407. PubMed ID: 31442478
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nematode selenoproteome: the use of the selenocysteine insertion system to decode one codon in an animal genome?
    Taskov K; Chapple C; Kryukov GV; Castellano S; Lobanov AV; Korotkov KV; Guigó R; Gladyshev VN
    Nucleic Acids Res; 2005; 33(7):2227-38. PubMed ID: 15843685
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Direct interaction between selenoprotein P and tubulin.
    Du X; Qiu S; Wang Z; Wang R; Wang C; Tian J; Liu Q
    Int J Mol Sci; 2014 Jun; 15(6):10199-214. PubMed ID: 24914767
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-level expression in Escherichia coli of selenocysteine-containing rat thioredoxin reductase utilizing gene fusions with engineered bacterial-type SECIS elements and co-expression with the selA, selB and selC genes.
    Arnér ES; Sarioglu H; Lottspeich F; Holmgren A; Böck A
    J Mol Biol; 1999 Oct; 292(5):1003-16. PubMed ID: 10512699
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Selenium utilization in thioredoxin and catalytic advantage provided by selenocysteine.
    Kim MJ; Lee BC; Hwang KY; Gladyshev VN; Kim HY
    Biochem Biophys Res Commun; 2015 Jun; 461(4):648-52. PubMed ID: 25912135
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An efficient selenium transport pathway of selenoprotein P utilizing a high-affinity ApoER2 receptor variant and being independent of selenocysteine lyase.
    Mizuno A; Toyama T; Ichikawa A; Sakai N; Yoshioka Y; Nishito Y; Toga R; Amesaka H; Kaneko T; Arisawa K; Tsutsumi R; Mita Y; Tanaka SI; Noguchi N; Saito Y
    J Biol Chem; 2023 Aug; 299(8):105009. PubMed ID: 37406814
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evolution of selenoproteins in the metazoan.
    Jiang L; Ni J; Liu Q
    BMC Genomics; 2012 Sep; 13():446. PubMed ID: 22943432
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Why is mammalian thioredoxin reductase 1 so dependent upon the use of selenium?
    Lothrop AP; Snider GW; Ruggles EL; Hondal RJ
    Biochemistry; 2014 Jan; 53(3):554-65. PubMed ID: 24393022
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.