BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

214 related articles for article (PubMed ID: 18377933)

  • 21. Maf1 and Repression of RNA Polymerase III-Mediated Transcription Drive Adipocyte Differentiation.
    Chen CY; Lanz RB; Walkey CJ; Chang WH; Lu W; Johnson DL
    Cell Rep; 2018 Aug; 24(7):1852-1864. PubMed ID: 30110641
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Maf1p, a negative effector of RNA polymerase III in Saccharomyces cerevisiae.
    Pluta K; Lefebvre O; Martin NC; Smagowicz WJ; Stanford DR; Ellis SR; Hopper AK; Sentenac A; Boguta M
    Mol Cell Biol; 2001 Aug; 21(15):5031-40. PubMed ID: 11438659
    [TBL] [Abstract][Full Text] [Related]  

  • 23. MAF1 represses CDKN1A through a Pol III-dependent mechanism.
    Lee YL; Li YC; Su CH; Chiao CH; Lin IH; Hsu MT
    Elife; 2015 Jun; 4():e06283. PubMed ID: 26067234
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Covalent small ubiquitin-like modifier (SUMO) modification of Maf1 protein controls RNA polymerase III-dependent transcription repression.
    Rohira AD; Chen CY; Allen JR; Johnson DL
    J Biol Chem; 2013 Jun; 288(26):19288-95. PubMed ID: 23673667
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Structural basis for RNA polymerase III transcription repression by Maf1.
    Vorländer MK; Baudin F; Moir RD; Wetzel R; Hagen WJH; Willis IM; Müller CW
    Nat Struct Mol Biol; 2020 Mar; 27(3):229-232. PubMed ID: 32066962
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Human MAF1 targets and represses active RNA polymerase III genes by preventing recruitment rather than inducing long-term transcriptional arrest.
    Orioli A; Praz V; Lhôte P; Hernandez N
    Genome Res; 2016 May; 26(5):624-35. PubMed ID: 26941251
    [TBL] [Abstract][Full Text] [Related]  

  • 27. MAF1: a new target of mTORC1.
    Michels AA
    Biochem Soc Trans; 2011 Apr; 39(2):487-91. PubMed ID: 21428925
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Derepression of RNA polymerase III transcription by phosphorylation and nuclear export of its negative regulator, Maf1.
    Towpik J; Graczyk D; Gajda A; Lefebvre O; Boguta M
    J Biol Chem; 2008 Jun; 283(25):17168-74. PubMed ID: 18445601
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Requirement of the mTOR kinase for the regulation of Maf1 phosphorylation and control of RNA polymerase III-dependent transcription in cancer cells.
    Shor B; Wu J; Shakey Q; Toral-Barza L; Shi C; Follettie M; Yu K
    J Biol Chem; 2010 May; 285(20):15380-15392. PubMed ID: 20233713
    [TBL] [Abstract][Full Text] [Related]  

  • 30. PP4 dephosphorylates Maf1 to couple multiple stress conditions to RNA polymerase III repression.
    Oler AJ; Cairns BR
    EMBO J; 2012 Mar; 31(6):1440-52. PubMed ID: 22333918
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Maf1 ameliorates cardiac hypertrophy by inhibiting RNA polymerase III through ERK1/2.
    Sun Y; Chen C; Xue R; Wang Y; Dong B; Li J; Chen C; Jiang J; Fan W; Liang Z; Huang H; Fang R; Dai G; Yan Y; Yang T; Li X; Huang ZP; Dong Y; Liu C
    Theranostics; 2019; 9(24):7268-7281. PubMed ID: 31695767
    [No Abstract]   [Full Text] [Related]  

  • 32. Genetic interactions of MAF1 identify a role for Med20 in transcriptional repression of ribosomal protein genes.
    Willis IM; Chua G; Tong AH; Brost RL; Hughes TR; Boone C; Moir RD
    PLoS Genet; 2008 Jul; 4(7):e1000112. PubMed ID: 18604275
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Differential Phosphorylation of RNA Polymerase III and the Initiation Factor TFIIIB in Saccharomyces cerevisiae.
    Lee J; Moir RD; Willis IM
    PLoS One; 2015; 10(5):e0127225. PubMed ID: 25970584
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Diurnal regulation of RNA polymerase III transcription is under the control of both the feeding-fasting response and the circadian clock.
    Mange F; Praz V; Migliavacca E; Willis IM; Schütz F; Hernandez N;
    Genome Res; 2017 Jun; 27(6):973-984. PubMed ID: 28341772
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Maf1 is involved in coupling carbon metabolism to RNA polymerase III transcription.
    Cieśla M; Towpik J; Graczyk D; Oficjalska-Pham D; Harismendy O; Suleau A; Balicki K; Conesa C; Lefebvre O; Boguta M
    Mol Cell Biol; 2007 Nov; 27(21):7693-702. PubMed ID: 17785443
    [TBL] [Abstract][Full Text] [Related]  

  • 36. MAF1, a repressor of RNA polymerase III-dependent transcription, regulates bone mass.
    Phillips E; Ahmad N; Sun L; Iben J; Walkey CJ; Rusin A; Yuen T; Rosen CJ; Willis IM; Zaidi M; Johnson DL
    Elife; 2022 May; 11():. PubMed ID: 35611941
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Mechanisms of regulation of RNA polymerase III-dependent transcription by TORC1.
    Wei Y; Tsang CK; Zheng XF
    EMBO J; 2009 Aug; 28(15):2220-30. PubMed ID: 19574957
    [TBL] [Abstract][Full Text] [Related]  

  • 38. mTORC1 directly phosphorylates and regulates human MAF1.
    Michels AA; Robitaille AM; Buczynski-Ruchonnet D; Hodroj W; Reina JH; Hall MN; Hernandez N
    Mol Cell Biol; 2010 Aug; 30(15):3749-57. PubMed ID: 20516213
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The C-Box Region of MAF1 Regulates Transcriptional Activity and Protein Stability.
    Pradhan A; Hammerquist AM; Khanna A; Curran SP
    J Mol Biol; 2017 Jan; 429(2):192-207. PubMed ID: 27986570
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The MAF1 Phosphoregulatory Region Controls MAF1 Interaction with the RNA Polymerase III C34 Subunit and Transcriptional Repression in Plants.
    Oliveira Andrade M; Sforça ML; Batista FAH; Figueira ACM; Benedetti CE
    Plant Cell; 2020 Sep; 32(9):3019-3035. PubMed ID: 32641350
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.