These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 18378271)

  • 1. Shock wave emission from laser-induced cavitation bubbles in polymer solutions.
    Brujan EA
    Ultrasonics; 2008 Sep; 48(5):423-6. PubMed ID: 18378271
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Jet formation and shock wave emission during collapse of ultrasound-induced cavitation bubbles and their role in the therapeutic applications of high-intensity focused ultrasound.
    Brujan EA; Ikeda T; Matsumoto Y
    Phys Med Biol; 2005 Oct; 50(20):4797-809. PubMed ID: 16204873
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Shock wave emission and cavitation bubble dynamics by femtosecond optical breakdown in polymer solutions.
    Brujan EA
    Ultrason Sonochem; 2019 Nov; 58():104694. PubMed ID: 31450304
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of dissolved-air concentration on spatial distribution of bubbles for sonochemistry.
    Tuziuti T; Yasui K; Sivakumar M; Iida Y
    Ultrasonics; 2006 Dec; 44 Suppl 1():e357-61. PubMed ID: 16780909
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nonequilibrium bubbles in a flowing langmuir monolayer.
    Muruganathan R; Khattari Z; Fischer TM
    J Phys Chem B; 2005 Nov; 109(46):21772-8. PubMed ID: 16853828
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spatial study on a multibubble system for sonochemistry by laser-light scattering.
    Tuziuti T; Yasui K; Iida Y
    Ultrason Sonochem; 2005 Jan; 12(1-2):73-7. PubMed ID: 15474955
    [TBL] [Abstract][Full Text] [Related]  

  • 7. On the physical origin of conical bubble structure under an ultrasonic horn.
    Dubus B; Vanhille C; Campos-Pozuelo C; Granger C
    Ultrason Sonochem; 2010 Jun; 17(5):810-8. PubMed ID: 20371200
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modeling of interaction between therapeutic ultrasound propagation and cavitation bubbles.
    Liebler M; Dreyer T; Riedlinger RE
    Ultrasonics; 2006 Dec; 44 Suppl 1():e319-24. PubMed ID: 16908041
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of static pressure on acoustic energy radiated by cavitation bubbles in viscous liquids under ultrasound.
    Yasui K; Towata A; Tuziuti T; Kozuka T; Kato K
    J Acoust Soc Am; 2011 Nov; 130(5):3233-42. PubMed ID: 22087995
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Vibration of a single microcapsule with a hard plastic shell in an acoustic standing wave field.
    Koyama D; Kotera H; Kitazawa N; Yoshida K; Nakamura K; Watanabe Y
    IEEE Trans Ultrason Ferroelectr Freq Control; 2011 Apr; 58(4):737-43. PubMed ID: 21507751
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dependence of the characteristics of bubbles on types of sonochemical reactors.
    Yasui K; Tuziuti T; Iida Y
    Ultrason Sonochem; 2005 Jan; 12(1-2):43-51. PubMed ID: 15474951
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Study of single bubble sonoluminescence in phosphoric acid.
    Moshaii A; Faraji M; Tajik-Nezhad S
    Ultrason Sonochem; 2011 Sep; 18(5):1148-52. PubMed ID: 21195011
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cavitation cluster dynamics in shock-wave lithotripsy: part 1. Free field.
    Arora M; Junge L; Ohl CD
    Ultrasound Med Biol; 2005 Jun; 31(6):827-39. PubMed ID: 15936498
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bubble oscillation and inertial cavitation in viscoelastic fluids.
    Jiménez-Fernández J; Crespo A
    Ultrasonics; 2005 Aug; 43(8):643-51. PubMed ID: 15890380
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nonlinear response to ultrasound of encapsulated microbubbles.
    Jiménez-Fernández J
    Ultrasonics; 2012 Aug; 52(6):784-93. PubMed ID: 22406132
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Theoretical and experimental validation of a dual-frequency excitation method for spatial control of cavitation.
    Sokka SD; Gauthier TP; Hynynen K
    Phys Med Biol; 2005 May; 50(9):2167-79. PubMed ID: 15843744
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Investigation of polymer-shelled microbubble motions in acoustophoresis.
    Kothapalli SV; Wiklund M; Janerot-Sjoberg B; Paradossi G; Grishenkov D
    Ultrasonics; 2016 Aug; 70():275-83. PubMed ID: 27261567
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A viscosity self-oscillation of polymer solution induced by the Belousov-Zhabotinsky reaction under acid-free condition.
    Hara Y; Yoshida R
    J Chem Phys; 2008 Jun; 128(22):224904. PubMed ID: 18554050
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantitative measurement of ultrasound disruption of polymer-shelled microbubbles.
    Bevan PD; Karshafian R; Tickner EG; Burns PN
    Ultrasound Med Biol; 2007 Nov; 33(11):1777-86. PubMed ID: 17656011
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A theoretical model for ice primary nucleation induced by acoustic cavitation.
    Saclier M; Peczalski R; Andrieu J
    Ultrason Sonochem; 2010 Jan; 17(1):98-105. PubMed ID: 19482538
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.