These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
1139 related articles for article (PubMed ID: 18378303)
1. Reconstruction of calvarial defect of rabbits using porous calcium silicate bioactive ceramics. Xu S; Lin K; Wang Z; Chang J; Wang L; Lu J; Ning C Biomaterials; 2008 Jun; 29(17):2588-96. PubMed ID: 18378303 [TBL] [Abstract][Full Text] [Related]
2. The enhancement of bone regeneration by a combination of osteoconductivity and osteostimulation using β-CaSiO3/β-Ca3(PO4)2 composite bioceramics. Wang C; Xue Y; Lin K; Lu J; Chang J; Sun J Acta Biomater; 2012 Jan; 8(1):350-60. PubMed ID: 21925627 [TBL] [Abstract][Full Text] [Related]
3. In vitro degradation, bioactivity, and cytocompatibility of calcium silicate, dimagnesium silicate, and tricalcium phosphate bioceramics. Ni S; Chang J J Biomater Appl; 2009 Aug; 24(2):139-58. PubMed ID: 18801892 [TBL] [Abstract][Full Text] [Related]
4. Degradation and silicon excretion of the calcium silicate bioactive ceramics during bone regeneration using rabbit femur defect model. Lin K; Liu Y; Huang H; Chen L; Wang Z; Chang J J Mater Sci Mater Med; 2015 Jun; 26(6):197. PubMed ID: 26099345 [TBL] [Abstract][Full Text] [Related]
5. Beta-CaSiO3/beta-Ca3(PO4)2 composite materials for hard tissue repair: in vitro studies. Ni S; Lin K; Chang J; Chou L J Biomed Mater Res A; 2008 Apr; 85(1):72-82. PubMed ID: 17688291 [TBL] [Abstract][Full Text] [Related]
6. The effect of calcium silicate on in vitro physiochemical properties and in vivo osteogenesis, degradability and bioactivity of porous β-tricalcium phosphate bioceramics. Liu S; Jin F; Lin K; Lu J; Sun J; Chang J; Dai K; Fan C Biomed Mater; 2013 Apr; 8(2):025008. PubMed ID: 23428666 [TBL] [Abstract][Full Text] [Related]
7. Advanced bioceramic composite for bone tissue engineering: design principles and structure-bioactivity relationship. El-Ghannam AR J Biomed Mater Res A; 2004 Jun; 69(3):490-501. PubMed ID: 15127396 [TBL] [Abstract][Full Text] [Related]
8. Improvement of porous beta-TCP scaffolds with rhBMP-2 chitosan carrier film for bone tissue application. Abarrategi A; Moreno-Vicente C; Ramos V; Aranaz I; Sanz Casado JV; López-Lacomba JL Tissue Eng Part A; 2008 Aug; 14(8):1305-19. PubMed ID: 18491953 [TBL] [Abstract][Full Text] [Related]
9. Comparative performance of three ceramic bone graft substitutes. Hing KA; Wilson LF; Buckland T Spine J; 2007; 7(4):475-90. PubMed ID: 17630146 [TBL] [Abstract][Full Text] [Related]
10. [Repair of cranial defects with bone marrow derived mesenchymal stem cells and beta-TCP scaffold in rabbits]. Bo B; Wang CY; Guo XM Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2003 Jul; 17(4):335-8. PubMed ID: 12920731 [TBL] [Abstract][Full Text] [Related]
11. Bone regeneration of critical calvarial defect in goat model by PLGA/TCP/rhBMP-2 scaffolds prepared by low-temperature rapid-prototyping technology. Yu D; Li Q; Mu X; Chang T; Xiong Z Int J Oral Maxillofac Surg; 2008 Oct; 37(10):929-34. PubMed ID: 18768295 [TBL] [Abstract][Full Text] [Related]
12. [The effect of a simulated inflammation procedure in simulated body fluid on bone-like apatite formation on porous HA/beta-TCP bioceramics]. Ji J; Ran J; Gou L; Wang F; Sun L Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2004 Aug; 21(4):531-5. PubMed ID: 15357425 [TBL] [Abstract][Full Text] [Related]
13. Evaluation of the osteoconductivity of α-tricalcium phosphate, β-tricalcium phosphate, and hydroxyapatite combined with or without simvastatin in rat calvarial defect. Rojbani H; Nyan M; Ohya K; Kasugai S J Biomed Mater Res A; 2011 Sep; 98(4):488-98. PubMed ID: 21681941 [TBL] [Abstract][Full Text] [Related]
14. Bioinspired structure of bioceramics for bone regeneration in load-bearing sites. Zhang F; Chang J; Lu J; Lin K; Ning C Acta Biomater; 2007 Nov; 3(6):896-904. PubMed ID: 17625995 [TBL] [Abstract][Full Text] [Related]
15. Ectopic osteoinduction and early degradation of recombinant human bone morphogenetic protein-2-loaded porous beta-tricalcium phosphate in mice. Liang G; Yang Y; Oh S; Ong JL; Zheng C; Ran J; Yin G; Zhou D Biomaterials; 2005 Jul; 26(20):4265-71. PubMed ID: 15683650 [TBL] [Abstract][Full Text] [Related]
16. In vitro and in vivo evaluation of akermanite bioceramics for bone regeneration. Huang Y; Jin X; Zhang X; Sun H; Tu J; Tang T; Chang J; Dai K Biomaterials; 2009 Oct; 30(28):5041-8. PubMed ID: 19545889 [TBL] [Abstract][Full Text] [Related]
17. Healing of rabbit calvarial bone defects using biphasic calcium phosphate ceramics made of submicron-sized grains with a hierarchical pore structure. Park JW; Kim ES; Jang JH; Suh JY; Park KB; Hanawa T Clin Oral Implants Res; 2010 Mar; 21(3):268-76. PubMed ID: 20074242 [TBL] [Abstract][Full Text] [Related]
18. Bone formation on the apatite-coated zirconia porous scaffolds within a rabbit calvarial defect. Kim HW; Shin SY; Kim HE; Lee YM; Chung CP; Lee HH; Rhyu IC J Biomater Appl; 2008 May; 22(6):485-504. PubMed ID: 17494967 [TBL] [Abstract][Full Text] [Related]
19. Bone bonding mechanism of beta-tricalcium phosphate. Kotani S; Fujita Y; Kitsugi T; Nakamura T; Yamamuro T; Ohtsuki C; Kokubo T J Biomed Mater Res; 1991 Oct; 25(10):1303-15. PubMed ID: 1812121 [TBL] [Abstract][Full Text] [Related]
20. Review paper: behavior of ceramic biomaterials derived from tricalcium phosphate in physiological condition. Kamitakahara M; Ohtsuki C; Miyazaki T J Biomater Appl; 2008 Nov; 23(3):197-212. PubMed ID: 18996965 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]