BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

351 related articles for article (PubMed ID: 18378598)

  • 21. The dynamics of major fibrolytic microbes and enzyme activity in the rumen in response to short- and long-term feeding of Sapindus rarak saponins.
    Wina E; Muetzel S; Becker K
    J Appl Microbiol; 2006; 100(1):114-22. PubMed ID: 16405691
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Methods for the isolation of cellulose-degrading microorganisms.
    McDonald JE; Rooks DJ; McCarthy AJ
    Methods Enzymol; 2012; 510():349-74. PubMed ID: 22608736
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Unique Organization of Extracellular Amylases into Amylosomes in the Resistant Starch-Utilizing Human Colonic Firmicutes Bacterium Ruminococcus bromii.
    Ze X; Ben David Y; Laverde-Gomez JA; Dassa B; Sheridan PO; Duncan SH; Louis P; Henrissat B; Juge N; Koropatkin NM; Bayer EA; Flint HJ
    mBio; 2015 Sep; 6(5):e01058-15. PubMed ID: 26419877
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Metatranscriptomic analyses of plant cell wall polysaccharide degradation by microorganisms in the cow rumen.
    Dai X; Tian Y; Li J; Luo Y; Liu D; Zheng H; Wang J; Dong Z; Hu S; Huang L
    Appl Environ Microbiol; 2015 Feb; 81(4):1375-86. PubMed ID: 25501482
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Rumen microbial attachment and degradation of plant cell walls.
    Akin DE; Barton FE
    Fed Proc; 1983 Jan; 42(1):114-21. PubMed ID: 6848373
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Biology, fiber-degradation, and enzymology of anaerobic zoosporic fungi.
    Wubah DA; Akin DE; Borneman WS
    Crit Rev Microbiol; 1993; 19(2):99-115. PubMed ID: 7687843
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A novel cell surface-anchored cellulose-binding protein encoded by the sca gene cluster of Ruminococcus flavefaciens.
    Rincon MT; Cepeljnik T; Martin JC; Barak Y; Lamed R; Bayer EA; Flint HJ
    J Bacteriol; 2007 Jul; 189(13):4774-83. PubMed ID: 17468247
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Plant cell wall degrading enzyme complexes from the cellulolytic rumen bacterium Ruminococcus flavefaciens.
    Kirby J; Aurilia V; McCrae SI; Martin JC; Flint HJ
    Biochem Soc Trans; 1998 May; 26(2):S169. PubMed ID: 9649844
    [No Abstract]   [Full Text] [Related]  

  • 29. Quantification by real-time PCR of cellulolytic bacteria in the rumen of sheep after supplementation of a forage diet with readily fermentable carbohydrates: effect of a yeast additive.
    Mosoni P; Chaucheyras-Durand F; Béra-Maillet C; Forano E
    J Appl Microbiol; 2007 Dec; 103(6):2676-85. PubMed ID: 18045448
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Microbial endoxylanases: effective weapons to breach the plant cell-wall barrier or, rather, triggers of plant defense systems?
    Beliën T; Van Campenhout S; Robben J; Volckaert G
    Mol Plant Microbe Interact; 2006 Oct; 19(10):1072-81. PubMed ID: 17022171
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Localization of ruminal cellulolytic bacteria on plant fibrous materials as determined by fluorescence in situ hybridization and real-time PCR.
    Shinkai T; Kobayashi Y
    Appl Environ Microbiol; 2007 Mar; 73(5):1646-52. PubMed ID: 17209077
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Expression of cellulosome components and type IV pili within the extracellular proteome of Ruminococcus flavefaciens 007.
    Vodovnik M; Duncan SH; Reid MD; Cantlay L; Turner K; Parkhill J; Lamed R; Yeoman CJ; Miller ME; White BA; Bayer EA; Marinšek-Logar R; Flint HJ
    PLoS One; 2013; 8(6):e65333. PubMed ID: 23750253
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Conversion of Thermobifida fusca free exoglucanases into cellulosomal components: comparative impact on cellulose-degrading activity.
    Caspi J; Irwin D; Lamed R; Li Y; Fierobe HP; Wilson DB; Bayer EA
    J Biotechnol; 2008 Jul; 135(4):351-7. PubMed ID: 18582975
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Rumen cellulosomics: divergent fiber-degrading strategies revealed by comparative genome-wide analysis of six ruminococcal strains.
    Dassa B; Borovok I; Ruimy-Israeli V; Lamed R; Flint HJ; Duncan SH; Henrissat B; Coutinho P; Morrison M; Mosoni P; Yeoman CJ; White BA; Bayer EA
    PLoS One; 2014; 9(7):e99221. PubMed ID: 24992679
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Regulation of Aspergillus genes encoding plant cell wall polysaccharide-degrading enzymes; relevance for industrial production.
    de Vries RP
    Appl Microbiol Biotechnol; 2003 Mar; 61(1):10-20. PubMed ID: 12658510
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A biophysical perspective on the cellulosome: new opportunities for biomass conversion.
    Ding SY; Xu Q; Crowley M; Zeng Y; Nimlos M; Lamed R; Bayer EA; Himmel ME
    Curr Opin Biotechnol; 2008 Jun; 19(3):218-27. PubMed ID: 18513939
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Interaction between H2-producing and non-H2-producing cellulolytic bacteria from the human colon.
    Chassard C; Gaillard-Martinie B; Bernalier-Donadille A
    FEMS Microbiol Lett; 2005 Jan; 242(2):339-44. PubMed ID: 15621457
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Physiology and genetics of xylan degradation by gastrointestinal tract bacteria.
    Hespell RB; Whitehead TR
    J Dairy Sci; 1990 Oct; 73(10):3013-22. PubMed ID: 2283426
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Cohesin-dockerin microarray: Diverse specificities between two complementary families of interacting protein modules.
    Haimovitz R; Barak Y; Morag E; Voronov-Goldman M; Shoham Y; Lamed R; Bayer EA
    Proteomics; 2008 Mar; 8(5):968-79. PubMed ID: 18219699
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Cellulolytic activity and structure of symbiotic bacteria in locust guts.
    Su LJ; Liu H; Li Y; Zhang HF; Chen M; Gao XH; Wang FQ; Song AD
    Genet Mol Res; 2014 Sep; 13(3):7926-36. PubMed ID: 25299108
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.