BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 18378663)

  • 1. Engineering and analysis of a Saccharomyces cerevisiae strain that uses formaldehyde as an auxiliary substrate.
    Baerends RJ; de Hulster E; Geertman JM; Daran JM; van Maris AJ; Veenhuis M; van der Klei IJ; Pronk JT
    Appl Environ Microbiol; 2008 May; 74(10):3182-8. PubMed ID: 18378663
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Functional analysis of structural genes for NAD(+)-dependent formate dehydrogenase in Saccharomyces cerevisiae.
    Overkamp KM; Kötter P; van der Hoek R; Schoondermark-Stolk S; Luttik MA; van Dijken JP; Pronk JT
    Yeast; 2002 Apr; 19(6):509-20. PubMed ID: 11921099
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Replacement of the initial steps of ethanol metabolism in Saccharomyces cerevisiae by ATP-independent acetylating acetaldehyde dehydrogenase.
    Kozak BU; van Rossum HM; Niemeijer MS; van Dijk M; Benjamin K; Wu L; Daran JM; Pronk JT; van Maris AJ
    FEMS Yeast Res; 2016 Mar; 16(2):fow006. PubMed ID: 26818854
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Metabolic impact of increased NADH availability in Saccharomyces cerevisiae.
    Hou J; Scalcinati G; Oldiges M; Vemuri GN
    Appl Environ Microbiol; 2010 Feb; 76(3):851-9. PubMed ID: 20023106
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Engineering NADH metabolism in Saccharomyces cerevisiae: formate as an electron donor for glycerol production by anaerobic, glucose-limited chemostat cultures.
    Geertman JM; van Dijken JP; Pronk JT
    FEMS Yeast Res; 2006 Dec; 6(8):1193-203. PubMed ID: 17156016
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Steady-state and transient-state analysis of growth and metabolite production in a Saccharomyces cerevisiae strain with reduced pyruvate-decarboxylase activity.
    Flikweert MT; Kuyper M; van Maris AJ; Kötter P; van Dijken JP; Pronk JT
    Biotechnol Bioeng; 1999; 66(1):42-50. PubMed ID: 10556793
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dihydroxyacetone detoxification in Saccharomyces cerevisiae involves formaldehyde dissimilation.
    Molin M; Blomberg A
    Mol Microbiol; 2006 May; 60(4):925-38. PubMed ID: 16677304
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Energetic aspects of glucose metabolism in a pyruvate-dehydrogenase-negative mutant of Saccharomyces cerevisiae.
    Pronk JT; Wenzel TJ; Luttik MA; Klaassen CC; Scheffers WA; Steensma HY; van Dijken JP
    Microbiology (Reading); 1994 Mar; 140 ( Pt 3)():601-10. PubMed ID: 8012582
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular analysis of a Saccharomyces cerevisiae mutant with improved ability to utilize xylose shows enhanced expression of proteins involved in transport, initial xylose metabolism, and the pentose phosphate pathway.
    Wahlbom CF; Cordero Otero RR; van Zyl WH; Hahn-Hägerdal B; Jönsson LJ
    Appl Environ Microbiol; 2003 Feb; 69(2):740-6. PubMed ID: 12570990
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Catabolic Activities Of Formaldehyde Enzymes In Recombinant Strains Of Hansenula Polymorpha].
    Demkiv OM; Parizhak SIa; Ishchuk EP; Gaĭda GZ; Gonchar MV
    Mikrobiologiia; 2011; 80(3):301-7. PubMed ID: 21861365
    [No Abstract]   [Full Text] [Related]  

  • 11. Effects of NADH-preferring xylose reductase expression on ethanol production from xylose in xylose-metabolizing recombinant Saccharomyces cerevisiae.
    Lee SH; Kodaki T; Park YC; Seo JH
    J Biotechnol; 2012 Apr; 158(4):184-91. PubMed ID: 21699927
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reduction of furan derivatives by overexpressing NADH-dependent Adh1 improves ethanol fermentation using xylose as sole carbon source with Saccharomyces cerevisiae harboring XR-XDH pathway.
    Ishii J; Yoshimura K; Hasunuma T; Kondo A
    Appl Microbiol Biotechnol; 2013 Mar; 97(6):2597-607. PubMed ID: 23001007
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Oxidation of exogenous formaldehyde in methylotrophic and nonmethylotrophic yeast cells.
    Maidan NN; Gonchar MV; Sibirny AA
    Biochemistry (Mosc); 1997 Jun; 62(6):636-40. PubMed ID: 9284545
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Formaldehyde dehydrogenase from the recombinant yeast Hansenula polymorpha: isolation and bioanalytic application.
    Demkiv OM; Paryzhak SY; Gayda GZ; Sibirny VA; Gonchar MV
    FEMS Yeast Res; 2007 Oct; 7(7):1153-9. PubMed ID: 17565589
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Deletion or overexpression of mitochondrial NAD+ carriers in Saccharomyces cerevisiae alters cellular NAD and ATP contents and affects mitochondrial metabolism and the rate of glycolysis.
    Agrimi G; Brambilla L; Frascotti G; Pisano I; Porro D; Vai M; Palmieri L
    Appl Environ Microbiol; 2011 Apr; 77(7):2239-46. PubMed ID: 21335394
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparative study on the production of guar alpha-galactosidase by Saccharomyces cerevisiae SU50B and Hansenula polymorpha 8/2 in continuous cultures.
    Giuseppin ML; Almkerk JW; Heistek JC; Verrips CT
    Appl Environ Microbiol; 1993 Jan; 59(1):52-9. PubMed ID: 8382463
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modulating the distribution of fluxes among respiration and fermentation by overexpression of HAP4 in Saccharomyces cerevisiae.
    van Maris AJ; Bakker BM; Brandt M; Boorsma A; Teixeira de Mattos MJ; Grivell LA; Pronk JT; Blom J
    FEMS Yeast Res; 2001 Jul; 1(2):139-49. PubMed ID: 12702359
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enzymic analysis of the crabtree effect in glucose-limited chemostat cultures of Saccharomyces cerevisiae.
    Postma E; Verduyn C; Scheffers WA; Van Dijken JP
    Appl Environ Microbiol; 1989 Feb; 55(2):468-77. PubMed ID: 2566299
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Anaerobic xylose fermentation by recombinant Saccharomyces cerevisiae carrying XYL1, XYL2, and XKS1 in mineral medium chemostat cultures.
    Eliasson A; Christensson C; Wahlbom CF; Hahn-Hägerdal B
    Appl Environ Microbiol; 2000 Aug; 66(8):3381-6. PubMed ID: 10919795
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Contribution of Complex I NADH Dehydrogenase to Respiratory Energy Coupling in Glucose-Grown Cultures of
    Juergens H; Hakkaart XDV; Bras JE; Vente A; Wu L; Benjamin KR; Pronk JT; Daran-Lapujade P; Mans R
    Appl Environ Microbiol; 2020 Jul; 86(15):. PubMed ID: 32471916
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.