These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
244 related articles for article (PubMed ID: 18379092)
1. Experimental and theoretical studies on the inclusion complexation of syringic acid with alpha-, beta-, gamma- and heptakis(2,6-di-O-methyl)-beta-cyclodextrin. Song le X; Wang HM; Xu P; Yang Y; Zhang ZQ Chem Pharm Bull (Tokyo); 2008 Apr; 56(4):468-74. PubMed ID: 18379092 [TBL] [Abstract][Full Text] [Related]
2. Inclusion phenomena of clove oil with alpha-, beta-, gamma- and heptakis (2,6-di-O-methyl)-beta-cyclodextrin. Song LX; Xu P; Wang HM; Yang Y Nat Prod Res; 2009; 23(9):789-800. PubMed ID: 19306153 [TBL] [Abstract][Full Text] [Related]
3. Study on the supramolecular systems of 5-(2-hydroxy phenyl)-10,15,20-tris (4-methoxy phenyl) porphyrin with cyclodextrins. Kong LH; Guo YJ; Li XX; Pan JH Spectrochim Acta A Mol Biomol Spectrosc; 2007 Mar; 66(3):594-8. PubMed ID: 16859961 [TBL] [Abstract][Full Text] [Related]
4. Rayleigh light scattering study on the supramolecular interactions of beta-cyclodextrin derivatives with tetrakis(4-methoxylphenyl)porphyrin. Yang R; Li K; Wang K; Liu F; Li N; Zhao F Spectrochim Acta A Mol Biomol Spectrosc; 2003 Jan; 59(1):153-61. PubMed ID: 12509156 [TBL] [Abstract][Full Text] [Related]
5. Novel behavior of O-methylated beta-cyclodextrins in inclusion of meso-tetraarylporphyrins. Kano K; Nishiyabu R; Doi R J Org Chem; 2005 Apr; 70(9):3667-73. PubMed ID: 15845005 [TBL] [Abstract][Full Text] [Related]
6. Comparative evaluation of the chiral recognition potential of single-isomer sulfated beta-cyclodextrin synthesis intermediates in non-aqueous capillary electrophoresis. Fejős I; Varga E; Benkovics G; Darcsi A; Malanga M; Fenyvesi É; Sohajda T; Szente L; Béni S J Chromatogr A; 2016 Oct; 1467():454-462. PubMed ID: 27448720 [TBL] [Abstract][Full Text] [Related]
7. Studies on the chiral recognition of peptide enantiomers by neutral and sulfated beta-cyclodextrin and heptakis-(2,3-di-O-acetyl)-beta-cyclodextrin using capillary electrophoresis and nuclear magnetic resonance. Süss F; Kahle C; Holzgrabe U; Scriba GK Electrophoresis; 2002 May; 23(9):1301-7. PubMed ID: 12007130 [TBL] [Abstract][Full Text] [Related]
8. Host-guest interaction of 1,4-dihydroxy-9,10-anthraquinone (quinizarin) with cyclodextrins. Kandoth N; Choudhury SD; Mukherjee T; Pal H Photochem Photobiol Sci; 2009 Jan; 8(1):82-90. PubMed ID: 19247534 [TBL] [Abstract][Full Text] [Related]
9. Carbon-13 nuclear magnetic resonance study of naproxen interaction with cyclodextrins in solution. Bettinetti G; Melani F; Mura P; Monnanni R; Giordano F J Pharm Sci; 1991 Dec; 80(12):1162-70. PubMed ID: 1815076 [TBL] [Abstract][Full Text] [Related]
10. Interactions of cholesterol with cyclodextrins in aqueous solution. Nishijo J; Moriyama S; Shiota S Chem Pharm Bull (Tokyo); 2003 Nov; 51(11):1253-7. PubMed ID: 14600368 [TBL] [Abstract][Full Text] [Related]
11. Inclusion complexes of tadalafil with natural and chemically modified beta-cyclodextrins. I: preparation and in-vitro evaluation. Badr-Eldin SM; Elkheshen SA; Ghorab MM Eur J Pharm Biopharm; 2008 Nov; 70(3):819-27. PubMed ID: 18655829 [TBL] [Abstract][Full Text] [Related]
12. Interactions between 4-thiothymidine and water-soluble cyclodextrins: Evidence for supramolecular structures in aqueous solutions. Rizzi V; Matera S; Semeraro P; Fini P; Cosma P Beilstein J Org Chem; 2016; 12():549-63. PubMed ID: 27340447 [TBL] [Abstract][Full Text] [Related]
13. Complexation of daclatasvir by single isomer methylated β-cyclodextrins studied by capillary electrophoresis, NMR spectroscopy and mass spectrometry. Krait S; Salgado A; Peluso P; Malanga M; Sohajda T; Benkovics G; Naumann L; Neusüß C; Chankvetadze B; Scriba GKE Carbohydr Polym; 2021 Dec; 273():118486. PubMed ID: 34560933 [TBL] [Abstract][Full Text] [Related]
14. Study on the aggregation and electrochemical properties of Rose Bengal in aqueous solution of cyclodextrins. Fini P; Loseto R; Catucci L; Cosma P; Agostiano A Bioelectrochemistry; 2007 Jan; 70(1):44-9. PubMed ID: 16720111 [TBL] [Abstract][Full Text] [Related]
15. Supramolecular host-guest interaction of trityl-nitroxide biradicals with cyclodextrins: modulation of spin-spin interaction and redox sensitivity. Tan X; Song Y; Liu H; Zhong Q; Rockenbauer A; Villamena FA; Zweier JL; Liu Y Org Biomol Chem; 2016 Feb; 14(5):1694-701. PubMed ID: 26700002 [TBL] [Abstract][Full Text] [Related]
16. Resolution of ephedrine derivatives by means of neutral and sulfated heptakis(2,3-di-O-acetyl)beta-cyclodextrins using capillary electrophoresis and nuclear magnetic resonance spectroscopy. Wedig M; Holzgrabe U Electrophoresis; 1999 Sep; 20(13):2698-704. PubMed ID: 10532337 [TBL] [Abstract][Full Text] [Related]
17. Nuclear magnetic resonance spectroscopic study of the inclusion complex of (R)-tedizolid with HDAS-β-CD, β-CD, and γ-cyclodextrin in aqueous solution. Bednarek E; Bocian W; Michalska K J Pharm Biomed Anal; 2019 May; 169():170-180. PubMed ID: 30921691 [TBL] [Abstract][Full Text] [Related]
18. Influence of the presence of methyl cyclodextrins in high-performance liquid chromatography mobile phases on the separation of beta-carboline alkaloids. León AG; Olives AI; del Castillo B; Martín MA J Chromatogr A; 2008 May; 1192(2):254-8. PubMed ID: 18433760 [TBL] [Abstract][Full Text] [Related]
19. Fluorometric study of the inclusion interaction of beta-cyclodextrin derivatives with tetraphenylporphyrin and its analytical application. Yang R; Wang K; Xiao D; Yang X Spectrochim Acta A Mol Biomol Spectrosc; 2001 Jul; 57(8):1595-602. PubMed ID: 11471711 [TBL] [Abstract][Full Text] [Related]
20. Investigation of the complexation between cyclodextrins and medetomidine enantiomers by capillary electrophoresis, NMR spectroscopy and molecular modeling. Krait S; Salgado A; Chankvetadze B; Gago F; Scriba GKE J Chromatogr A; 2018 Sep; 1567():198-210. PubMed ID: 30055912 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]