BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

266 related articles for article (PubMed ID: 18379691)

  • 1. A design concept of long-wavelength fluorescent analogs of rhodamine dyes: replacement of oxygen with silicon atom.
    Fu M; Xiao Y; Qian X; Zhao D; Xu Y
    Chem Commun (Camb); 2008 Apr; (15):1780-2. PubMed ID: 18379691
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Red fluorescent scaffold for highly sensitive protease activity probes.
    Kushida Y; Hanaoka K; Komatsu T; Terai T; Ueno T; Yoshida K; Uchiyama M; Nagano T
    Bioorg Med Chem Lett; 2012 Jun; 22(12):3908-11. PubMed ID: 22607681
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Near-Infrared Phosphorus-Substituted Rhodamine with Emission Wavelength above 700 nm for Bioimaging.
    Chai X; Cui X; Wang B; Yang F; Cai Y; Wu Q; Wang T
    Chemistry; 2015 Nov; 21(47):16754-8. PubMed ID: 26420515
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rhodamine-inspired far-red to near-infrared dyes and their application as fluorescence probes.
    Sun YQ; Liu J; Lv X; Liu Y; Zhao Y; Guo W
    Angew Chem Int Ed Engl; 2012 Jul; 51(31):7634-6. PubMed ID: 22674799
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Silicon Substitution in Oxazine Dyes Yields Near-Infrared Azasiline Fluorophores That Absorb and Emit beyond 700 nm.
    Choi A; Miller SC
    Org Lett; 2018 Aug; 20(15):4482-4485. PubMed ID: 30014702
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Efficient red-edge materials photosensitized by Rhodamine 640.
    Garcia-Moreno I; Costela A; Pintado-Sierra M; Martin V; Sastre R
    J Phys Chem B; 2009 Aug; 113(31):10611-8. PubMed ID: 19591505
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The unprecedented J-aggregate formation of rhodamine moieties induced by 9-phenylanthracenyl substitution.
    Kim S; Fujitsuka M; Tohnai N; Tachikawa T; Hisaki I; Miyata M; Majima T
    Chem Commun (Camb); 2015 Jul; 51(58):11580-3. PubMed ID: 26095853
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rhodamine spiroamides for multicolor single-molecule switching fluorescent nanoscopy.
    Belov VN; Bossi ML; Fölling J; Boyarskiy VP; Hell SW
    Chemistry; 2009 Oct; 15(41):10762-76. PubMed ID: 19760719
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quirks of dye nomenclature. 5. Rhodamines.
    Cooksey CJ
    Biotech Histochem; 2016; 91(1):71-6. PubMed ID: 26529223
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spirolactonized Si-rhodamine: a novel NIR fluorophore utilized as a platform to construct Si-rhodamine-based probes.
    Wang T; Zhao QJ; Hu HG; Yu SC; Liu X; Liu L; Wu QY
    Chem Commun (Camb); 2012 Sep; 48(70):8781-3. PubMed ID: 22836301
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High-spatial-resolution surface-temperature mapping using fluorescent thermometry.
    Löw P; Kim B; Takama N; Bergaud C
    Small; 2008 Jul; 4(7):908-14. PubMed ID: 18504716
    [No Abstract]   [Full Text] [Related]  

  • 12. Masked rhodamine dyes of five principal colors revealed by photolysis of a 2-diazo-1-indanone caging group: synthesis, photophysics, and light microscopy applications.
    Belov VN; Mitronova GY; Bossi ML; Boyarskiy VP; Hebisch E; Geisler C; Kolmakov K; Wurm CA; Willig KI; Hell SW
    Chemistry; 2014 Oct; 20(41):13162-73. PubMed ID: 25196166
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Silicon-substituted xanthene dyes and their applications in bioimaging.
    Kushida Y; Nagano T; Hanaoka K
    Analyst; 2015 Feb; 140(3):685-95. PubMed ID: 25380094
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of surfactants on the molecular aggregation of rhodamine dyes in aqueous solutions.
    Tajalli H; Ghanadzadeh Gilani A; Zakerhamidi MS; Moghadam M
    Spectrochim Acta A Mol Biomol Spectrosc; 2009 May; 72(4):697-702. PubMed ID: 19147398
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Coumarin-caged rosamine probes based on a unique intramolecular carbon-carbon spirocyclization.
    Lin W; Long L; Tan W; Chen B; Yuan L
    Chemistry; 2010 Apr; 16(13):3914-7. PubMed ID: 20222098
    [No Abstract]   [Full Text] [Related]  

  • 16. Reactivity-based fluoride detection: evolving design principles for spring-loaded turn-on fluorescent probes.
    Jiang X; Vieweger MC; Bollinger JC; Dragnea B; Lee D
    Org Lett; 2007 Aug; 9(18):3579-82. PubMed ID: 17665923
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Photoinduced cleaning of water-soluble dyes on patterned superhydrophilic/superhydrophobic substrates.
    Zhang X; Zhang J; Ren Z; Zhang X; Tian T; Wang Y; Dong F; Yang B
    Nanoscale; 2010 Feb; 2(2):277-81. PubMed ID: 20644805
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A rhodamine-deoxylactam based sensor for chromo-fluorogenic detection of nerve agent simulant.
    Wu Z; Wu X; Yang Y; Wen TB; Han S
    Bioorg Med Chem Lett; 2012 Oct; 22(20):6358-61. PubMed ID: 22995618
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Photostable Silicon Rhodamine Platform for Optical Voltage Sensing.
    Huang YL; Walker AS; Miller EW
    J Am Chem Soc; 2015 Aug; 137(33):10767-76. PubMed ID: 26237573
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A new trend in rhodamine-based chemosensors: application of spirolactam ring-opening to sensing ions.
    Kim HN; Lee MH; Kim HJ; Kim JS; Yoon J
    Chem Soc Rev; 2008 Aug; 37(8):1465-72. PubMed ID: 18648672
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.