These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
488 related articles for article (PubMed ID: 18379823)
1. Expression of Sox2 in mouse taste buds and its relation to innervation. Suzuki Y Cell Tissue Res; 2008 Jun; 332(3):393-401. PubMed ID: 18379823 [TBL] [Abstract][Full Text] [Related]
2. Effects of glossopharyngeal nerve section on the expression of neurotrophins and their receptors in lingual taste buds of adult mice. Yee C; Bartel DL; Finger TE J Comp Neurol; 2005 Oct; 490(4):371-90. PubMed ID: 16127713 [TBL] [Abstract][Full Text] [Related]
3. Distinct expression pattern of insulin-like growth factor family in rodent taste buds. Suzuki Y; Takeda M; Sakakura Y; Suzuki N J Comp Neurol; 2005 Jan; 482(1):74-84. PubMed ID: 15612015 [TBL] [Abstract][Full Text] [Related]
4. Expression of BDNF and TrkB in mouse taste buds after denervation and in circumvallate papillae during development. Uchida N; Kanazawa M; Suzuki Y; Takeda M Arch Histol Cytol; 2003 Mar; 66(1):17-25. PubMed ID: 12703550 [TBL] [Abstract][Full Text] [Related]
5. A strong nerve dependence of sonic hedgehog expression in basal cells in mouse taste bud and an autonomous transcriptional control of genes in differentiated taste cells. Miura H; Kato H; Kusakabe Y; Tagami M; Miura-Ohnuma J; Ninomiya Y; Hino A Chem Senses; 2004 Nov; 29(9):823-31. PubMed ID: 15574818 [TBL] [Abstract][Full Text] [Related]
6. Brain-derived neurotrophic factor-, neurotrophin-3-, and tyrosine kinase receptor-like immunoreactivity in lingual taste bud fields of mature hamster after sensory denervation. Ganchrow D; Ganchrow JR; Verdin-Alcazar M; Whitehead MC J Comp Neurol; 2003 Jan; 455(1):25-39. PubMed ID: 12454994 [TBL] [Abstract][Full Text] [Related]
7. NCAM expression by subsets of taste cells is dependent upon innervation. Smith DV; Akeson RA; Shipley MT J Comp Neurol; 1993 Oct; 336(4):493-506. PubMed ID: 8245222 [TBL] [Abstract][Full Text] [Related]
8. Expression of the neural cell adhesion molecule (NCAM) and polysialic acid during taste bud degeneration and regeneration. Smith DV; Klevitsky R; Akeson RA; Shipley MT J Comp Neurol; 1994 Sep; 347(2):187-96. PubMed ID: 7814663 [TBL] [Abstract][Full Text] [Related]
9. Differential expression of Sox2 and Sox3 in neuronal and sensory progenitors of the developing inner ear of the chick. Neves J; Kamaid A; Alsina B; Giraldez F J Comp Neurol; 2007 Aug; 503(4):487-500. PubMed ID: 17534940 [TBL] [Abstract][Full Text] [Related]
10. Taste bud expression of human blood group antigens. Smith DV; Klevitsky R; Akeson RA; Shipley MT J Comp Neurol; 1994 May; 343(1):130-42. PubMed ID: 8027431 [TBL] [Abstract][Full Text] [Related]
11. Sox2 is important for two crucial processes in lung development: branching morphogenesis and epithelial cell differentiation. Gontan C; de Munck A; Vermeij M; Grosveld F; Tibboel D; Rottier R Dev Biol; 2008 May; 317(1):296-309. PubMed ID: 18374910 [TBL] [Abstract][Full Text] [Related]
12. Expression of cyclin-dependent kinase inhibitors in taste buds of mouse and hamster. Hirota M; Ito T; Okudela K; Kawabe R; Hayashi H; Yazawa T; Fujita K; Kitamura H Tissue Cell; 2001 Feb; 33(1):25-32. PubMed ID: 11292167 [TBL] [Abstract][Full Text] [Related]
13. Brain-derived neurotrophic factor mRNA is expressed in the developing taste bud-bearing tongue papillae of rat. Nosrat CA; Olson L J Comp Neurol; 1995 Oct; 360(4):698-704. PubMed ID: 8801260 [TBL] [Abstract][Full Text] [Related]
14. Expression of glial cell line-derived neurotrophic factor (GDNF) and GDNF family receptor alpha1 in mouse taste bud cells after denervation. Takeda M; Suzuki Y; Obara N; Uchida N; Kawakoshi K Anat Sci Int; 2005 Jun; 80(2):105-10. PubMed ID: 15960316 [TBL] [Abstract][Full Text] [Related]
15. Transcellular labeling by DiI demonstrates the glossopharyngeal innervation of taste buds in the lingual epithelium of the axolotl. Nagai T J Comp Neurol; 1993 May; 331(1):122-33. PubMed ID: 8320345 [TBL] [Abstract][Full Text] [Related]
16. Neurochemical characterization of sea lamprey taste buds and afferent gustatory fibers: presence of serotonin, calretinin, and CGRP immunoreactivity in taste bud bi-ciliated cells of the earliest vertebrates. Barreiro-Iglesias A; Villar-Cerviño V; Villar-Cheda B; Anadón R; Rodicio MC J Comp Neurol; 2008 Dec; 511(4):438-53. PubMed ID: 18831528 [TBL] [Abstract][Full Text] [Related]
17. Expression of NeuroD in the mouse taste buds. Suzuki Y; Takeda M; Obara N Cell Tissue Res; 2002 Mar; 307(3):423-8. PubMed ID: 11904779 [TBL] [Abstract][Full Text] [Related]
18. Expression of Mash1 in basal cells of rat circumvallate taste buds is dependent upon gustatory innervation. Seta Y; Toyono T; Takeda S; Toyoshima K FEBS Lett; 1999 Feb; 444(1):43-6. PubMed ID: 10037145 [TBL] [Abstract][Full Text] [Related]
19. Distribution of vimentin in the developing chick taste bud during the perihatching period. Witt M; Ganchrow JR; Ganchrow D Cell Mol Biol (Noisy-le-grand); 1999 May; 45(3):303-16. PubMed ID: 10386787 [TBL] [Abstract][Full Text] [Related]
20. Notch-associated gene expression in embryonic and adult taste papillae and taste buds suggests a role in taste cell lineage decisions. Seta Y; Seta C; Barlow LA J Comp Neurol; 2003 Sep; 464(1):49-61. PubMed ID: 12866128 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]