These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Calcium induces increases in peroxisome proliferator-activated receptor gamma coactivator-1alpha and mitochondrial biogenesis by a pathway leading to p38 mitogen-activated protein kinase activation. Wright DC; Geiger PC; Han DH; Jones TE; Holloszy JO J Biol Chem; 2007 Jun; 282(26):18793-9. PubMed ID: 17488713 [TBL] [Abstract][Full Text] [Related]
3. Contraction signaling to glucose transport in skeletal muscle. Jessen N; Goodyear LJ J Appl Physiol (1985); 2005 Jul; 99(1):330-7. PubMed ID: 16036906 [TBL] [Abstract][Full Text] [Related]
6. Early signaling responses to divergent exercise stimuli in skeletal muscle from well-trained humans. Coffey VG; Zhong Z; Shield A; Canny BJ; Chibalin AV; Zierath JR; Hawley JA FASEB J; 2006 Jan; 20(1):190-2. PubMed ID: 16267123 [TBL] [Abstract][Full Text] [Related]
7. Effects of calcineurin activation on insulin-, AICAR- and contraction-induced glucose transport in skeletal muscle. Ryder JW; Long YC; Nilsson E; Mahlapuu M; Zierath JR J Physiol; 2005 Sep; 567(Pt 2):379-86. PubMed ID: 15975979 [TBL] [Abstract][Full Text] [Related]
8. Mechanisms of exercise-induced survival motor neuron expression in the skeletal muscle of spinal muscular atrophy-like mice. Ng SY; Mikhail A; Ljubicic V J Physiol; 2019 Sep; 597(18):4757-4778. PubMed ID: 31361024 [TBL] [Abstract][Full Text] [Related]
9. Signalling to glucose transport in skeletal muscle during exercise. Richter EA; Nielsen JN; Jørgensen SB; Frøsig C; Wojtaszewski JF Acta Physiol Scand; 2003 Aug; 178(4):329-35. PubMed ID: 12864737 [TBL] [Abstract][Full Text] [Related]
10. AMP-activated protein kinase: a critical signaling intermediary for exercise-stimulated glucose transport? Goodyear LJ Exerc Sport Sci Rev; 2000 Jul; 28(3):113-6. PubMed ID: 10916702 [TBL] [Abstract][Full Text] [Related]
11. Effect of acute exercise on AMPK signaling in skeletal muscle of subjects with type 2 diabetes: a time-course and dose-response study. Sriwijitkamol A; Coletta DK; Wajcberg E; Balbontin GB; Reyna SM; Barrientes J; Eagan PA; Jenkinson CP; Cersosimo E; DeFronzo RA; Sakamoto K; Musi N Diabetes; 2007 Mar; 56(3):836-48. PubMed ID: 17327455 [TBL] [Abstract][Full Text] [Related]
12. Resistance exercise enhances the molecular signaling of mitochondrial biogenesis induced by endurance exercise in human skeletal muscle. Wang L; Mascher H; Psilander N; Blomstrand E; Sahlin K J Appl Physiol (1985); 2011 Nov; 111(5):1335-44. PubMed ID: 21836044 [TBL] [Abstract][Full Text] [Related]
13. Thyroid hormone (T3) rapidly activates p38 and AMPK in skeletal muscle in vivo. Irrcher I; Walkinshaw DR; Sheehan TE; Hood DA J Appl Physiol (1985); 2008 Jan; 104(1):178-85. PubMed ID: 17962579 [TBL] [Abstract][Full Text] [Related]
15. Carbohydrate feeding during recovery alters the skeletal muscle metabolic response to repeated sessions of high-intensity interval exercise in humans. Cochran AJ; Little JP; Tarnopolsky MA; Gibala MJ J Appl Physiol (1985); 2010 Mar; 108(3):628-36. PubMed ID: 20056852 [TBL] [Abstract][Full Text] [Related]
16. The AMP-activated protein kinase activator AICAR does not induce GLUT4 translocation to transverse tubules but stimulates glucose uptake and p38 mitogen-activated protein kinases alpha and beta in skeletal muscle. Lemieux K; Konrad D; Klip A; Marette A FASEB J; 2003 Sep; 17(12):1658-65. PubMed ID: 12958172 [TBL] [Abstract][Full Text] [Related]
17. Divergent effects of exercise on metabolic and mitogenic signaling pathways in human skeletal muscle. Widegren U; Jiang XJ; Krook A; Chibalin AV; Björnholm M; Tally M; Roth RA; Henriksson J; Wallberg-henriksson H; Zierath JR FASEB J; 1998 Oct; 12(13):1379-89. PubMed ID: 9761781 [TBL] [Abstract][Full Text] [Related]
18. NOS isoform-specific regulation of basal but not exercise-induced mitochondrial biogenesis in mouse skeletal muscle. Wadley GD; Choate J; McConell GK J Physiol; 2007 Nov; 585(Pt 1):253-62. PubMed ID: 17916611 [TBL] [Abstract][Full Text] [Related]
19. Adaptation of Skeletal Muscles to Contractile Activity of Varying Duration and Intensity: The Role of PGC-1α. Popov DV Biochemistry (Mosc); 2018 Jun; 83(6):613-628. PubMed ID: 30195320 [TBL] [Abstract][Full Text] [Related]
20. Signalling mechanisms in skeletal muscle: role in substrate selection and muscle adaptation. Hawley JA; Hargreaves M; Zierath JR Essays Biochem; 2006; 42():1-12. PubMed ID: 17144876 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]