These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

260 related articles for article (PubMed ID: 18380342)

  • 1. Searching for splicing motifs.
    Chasin LA
    Adv Exp Med Biol; 2007; 623():85-106. PubMed ID: 18380342
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Computational analysis of splicing errors and mutations in human transcripts.
    Kurmangaliyev YZ; Gelfand MS
    BMC Genomics; 2008 Jan; 9():13. PubMed ID: 18194514
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Compensatory relationship between splice sites and exonic splicing signals depending on the length of vertebrate introns.
    Dewey CN; Rogozin IB; Koonin EV
    BMC Genomics; 2006 Dec; 7():311. PubMed ID: 17156453
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Why Selection Might Be Stronger When Populations Are Small: Intron Size and Density Predict within and between-Species Usage of Exonic Splice Associated cis-Motifs.
    Wu X; Hurst LD
    Mol Biol Evol; 2015 Jul; 32(7):1847-61. PubMed ID: 25771198
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Splicing of constitutive upstream introns is essential for the recognition of intra-exonic suboptimal splice sites in the thrombopoietin gene.
    Romano M; Marcucci R; Baralle FE
    Nucleic Acids Res; 2001 Feb; 29(4):886-94. PubMed ID: 11160920
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Silencer elements as possible inhibitors of pseudoexon splicing.
    Sironi M; Menozzi G; Riva L; Cagliani R; Comi GP; Bresolin N; Giorda R; Pozzoli U
    Nucleic Acids Res; 2004; 32(5):1783-91. PubMed ID: 15034146
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Vulnerable exons, like ACADM exon 5, are highly dependent on maintaining a correct balance between splicing enhancers and silencers.
    Holm LL; Doktor TK; Hansen MB; Petersen USS; Andresen BS
    Hum Mutat; 2022 Feb; 43(2):253-265. PubMed ID: 34923709
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Global control of aberrant splice-site activation by auxiliary splicing sequences: evidence for a gradient in exon and intron definition.
    Královicová J; Vorechovsky I
    Nucleic Acids Res; 2007; 35(19):6399-413. PubMed ID: 17881373
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transcriptome-Wide Detection of Intron/Exon Definition in the Endogenous Pre-mRNA Transcripts of Mammalian Cells and Its Regulation by Depolarization.
    Liu L; Das U; Ogunsola S; Xie J
    Int J Mol Sci; 2022 Sep; 23(17):. PubMed ID: 36077555
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Computational definition of sequence motifs governing constitutive exon splicing.
    Zhang XH; Chasin LA
    Genes Dev; 2004 Jun; 18(11):1241-50. PubMed ID: 15145827
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A systematic analysis of intronic sequences downstream of 5' splice sites reveals a widespread role for U-rich motifs and TIA1/TIAL1 proteins in alternative splicing regulation.
    Aznarez I; Barash Y; Shai O; He D; Zielenski J; Tsui LC; Parkinson J; Frey BJ; Rommens JM; Blencowe BJ
    Genome Res; 2008 Aug; 18(8):1247-58. PubMed ID: 18456862
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Subtle discrepancies of SF2/ASF ESE sequence motif among human tissues: A computational approach.
    Siala O; Rebai A; Baklouti F; Fakhfakh F
    Comput Biol Chem; 2010 Jun; 34(3):203-9. PubMed ID: 20637698
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evidence for deep phylogenetic conservation of exonic splice-related constraints: splice-related skews at exonic ends in the brown alga Ectocarpus are common and resemble those seen in humans.
    Wu X; Tronholm A; Cáceres EF; Tovar-Corona JM; Chen L; Urrutia AO; Hurst LD
    Genome Biol Evol; 2013; 5(9):1731-45. PubMed ID: 23902749
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Systematic identification and analysis of exonic splicing silencers.
    Wang Z; Rolish ME; Yeo G; Tung V; Mawson M; Burge CB
    Cell; 2004 Dec; 119(6):831-45. PubMed ID: 15607979
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Computational prediction of splicing regulatory elements shared by Tetrapoda organisms.
    Churbanov A; Vorechovský I; Hicks C
    BMC Genomics; 2009 Nov; 10():508. PubMed ID: 19889216
    [TBL] [Abstract][Full Text] [Related]  

  • 16. General and specific functions of exonic splicing silencers in splicing control.
    Wang Z; Xiao X; Van Nostrand E; Burge CB
    Mol Cell; 2006 Jul; 23(1):61-70. PubMed ID: 16797197
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Changes in exon-intron structure during vertebrate evolution affect the splicing pattern of exons.
    Gelfman S; Burstein D; Penn O; Savchenko A; Amit M; Schwartz S; Pupko T; Ast G
    Genome Res; 2012 Jan; 22(1):35-50. PubMed ID: 21974994
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Over-representation of exonic splicing enhancers in human intronless genes suggests multiple functions in mRNA processing.
    Pozzoli U; Riva L; Menozzi G; Cagliani R; Comi GP; Bresolin N; Giorda R; Sironi M
    Biochem Biophys Res Commun; 2004 Sep; 322(2):470-6. PubMed ID: 15325254
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Splicing of designer exons reveals unexpected complexity in pre-mRNA splicing.
    Zhang XH; Arias MA; Ke S; Chasin LA
    RNA; 2009 Mar; 15(3):367-76. PubMed ID: 19155327
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pre-mRNA secondary structures influence exon recognition.
    Hiller M; Zhang Z; Backofen R; Stamm S
    PLoS Genet; 2007 Nov; 3(11):e204. PubMed ID: 18020710
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.