These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
165 related articles for article (PubMed ID: 18380467)
1. P-glycoprotein efflux inhibition by amphiphilic diblock copolymers: relationship between copolymer concentration and substrate hydrophobicity. Zastre JA; Jackson JK; Wong W; Burt HM Mol Pharm; 2008; 5(4):643-53. PubMed ID: 18380467 [TBL] [Abstract][Full Text] [Related]
2. Evidence for modulation of P-glycoprotein-mediated efflux by methoxypolyethylene glycol-block-Polycaprolactone amphiphilic diblock copolymers. Zastre J; Jackson J; Burt H Pharm Res; 2004 Aug; 21(8):1489-97. PubMed ID: 15359586 [TBL] [Abstract][Full Text] [Related]
3. Methoxypolyethylene glycol-block-polycaprolactone diblock copolymers reduce P-glycoprotein efflux in the absence of a membrane fluidization effect while stimulating P-glycoprotein ATPase activity. Zastre J; Jackson JK; Wong W; Burt HM J Pharm Sci; 2007 Apr; 96(4):864-75. PubMed ID: 17094135 [TBL] [Abstract][Full Text] [Related]
4. Relationship between the structure of amphiphilic copolymers and their ability to disturb lipid bilayers. Demina T; Grozdova I; Krylova O; Zhirnov A; Istratov V; Frey H; Kautz H; Melik-Nubarov N Biochemistry; 2005 Mar; 44(10):4042-54. PubMed ID: 15751981 [TBL] [Abstract][Full Text] [Related]
5. Enhanced cellular accumulation of a P-glycoprotein substrate, rhodamine-123, by Caco-2 cells using low molecular weight methoxypolyethylene glycol-block-polycaprolactone diblock copolymers. Zastre J; Jackson J; Bajwa M; Liggins R; Iqbal F; Burt H Eur J Pharm Biopharm; 2002 Nov; 54(3):299-309. PubMed ID: 12445560 [TBL] [Abstract][Full Text] [Related]
6. Polyethylene glycol-phosphatidylethanolamine conjugate (PEG-PE)-based mixed micelles: some properties, loading with paclitaxel, and modulation of P-glycoprotein-mediated efflux. Dabholkar RD; Sawant RM; Mongayt DA; Devarajan PV; Torchilin VP Int J Pharm; 2006 Jun; 315(1-2):148-57. PubMed ID: 16616818 [TBL] [Abstract][Full Text] [Related]
7. Reversal of multidrug resistance by methoxypolyethylene glycol-block-polycaprolactone diblock copolymers through the inhibition of P-glycoprotein function. Elamanchili P; McEachern C; Burt H J Pharm Sci; 2009 Mar; 98(3):945-58. PubMed ID: 18623213 [TBL] [Abstract][Full Text] [Related]
8. Non-surface activity and micellization of ionic amphiphilic diblock copolymers in water. Hydrophobic chain length dependence and salt effect on surface activity and the critical micelle concentration. Kaewsaiha P; Matsumoto K; Matsuoka H Langmuir; 2005 Oct; 21(22):9938-45. PubMed ID: 16229512 [TBL] [Abstract][Full Text] [Related]
9. Interactions of pluronic block copolymers with brain microvessel endothelial cells: evidence of two potential pathways for drug absorption. Miller DW; Batrakova EV; Waltner TO; Alakhov VYu ; Kabanov AV Bioconjug Chem; 1997; 8(5):649-57. PubMed ID: 9327127 [TBL] [Abstract][Full Text] [Related]
11. In vitro human plasma distribution of nanoparticulate paclitaxel is dependent on the physicochemical properties of poly(ethylene glycol)-block-poly(caprolactone) nanoparticles. Letchford K; Liggins R; Wasan KM; Burt H Eur J Pharm Biopharm; 2009 Feb; 71(2):196-206. PubMed ID: 18762253 [TBL] [Abstract][Full Text] [Related]
12. Same-single-cell analysis using the microfluidic biochip to reveal drug accumulation enhancement by an amphiphilic diblock copolymer drug formulation. Khamenehfar A; Wan CP; Li PC; Letchford K; Burt HM Anal Bioanal Chem; 2014 Nov; 406(28):7071-83. PubMed ID: 25315452 [TBL] [Abstract][Full Text] [Related]
13. Computer simulation of architectural and molecular weight effects on the assembly of amphiphilic linear-dendritic block copolymers in solution. Suek NW; Lamm MH Langmuir; 2008 Apr; 24(7):3030-6. PubMed ID: 18288872 [TBL] [Abstract][Full Text] [Related]
14. Controlled synthesis and interface properties of new amphiphilic PCL-g-PEO copolymers. Rieger J; Dubois P; Jérôme R; Jérôme C Langmuir; 2006 Aug; 22(18):7471-9. PubMed ID: 16922523 [TBL] [Abstract][Full Text] [Related]
15. Interaction of ethylene oxide-propylene oxide copolymers with ionic surfactants studied by calorimetry: random versus block copolymers. Niemiec A; Loh W J Phys Chem B; 2008 Jan; 112(3):727-33. PubMed ID: 18081338 [TBL] [Abstract][Full Text] [Related]
16. Inhibition of P-glycoprotein pumps by PEO-PPO amphiphiles: branched versus linear derivatives. Alvarez-Lorenzo C; Rey-Rico A; Brea J; Loza MI; Concheiro A; Sosnik A Nanomedicine (Lond); 2010 Nov; 5(9):1371-83. PubMed ID: 21128720 [TBL] [Abstract][Full Text] [Related]
17. Flavonoid dimers as bivalent modulators for p-glycoprotein-based multidrug resistance: structure-activity relationships. Chan KF; Zhao Y; Chow TW; Yan CS; Ma DL; Burkett BA; Wong IL; Chow LM; Chan TH ChemMedChem; 2009 Apr; 4(4):594-614. PubMed ID: 19288491 [TBL] [Abstract][Full Text] [Related]
18. Synthesis and assessment of first-generation polyamidoamine dendrimer prodrugs to enhance the cellular permeability of P-gp substrates. Najlah M; Freeman S; Attwood D; D'Emanuele A Bioconjug Chem; 2007; 18(3):937-46. PubMed ID: 17355118 [TBL] [Abstract][Full Text] [Related]
19. Mechanism of inhibition of P-glycoprotein mediated efflux by vitamin E TPGS: influence on ATPase activity and membrane fluidity. Collnot EM; Baldes C; Wempe MF; Kappl R; Hüttermann J; Hyatt JA; Edgar KJ; Schaefer UF; Lehr CM Mol Pharm; 2007; 4(3):465-74. PubMed ID: 17367162 [TBL] [Abstract][Full Text] [Related]
20. The influence of enaminones on the transport and oral bioavailability of P-glycoprotein substrate therapeutic agents. Salama NN; Scott KR; Eddington ND Int J Pharm; 2004 Apr; 273(1-2):135-47. PubMed ID: 15010138 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]