These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 18380484)

  • 21. Identifying crystallization- and incorporation-limited regimes during vapor-liquid-solid growth of Si nanowires.
    Pinion CW; Nenon DP; Christesen JD; Cahoon JF
    ACS Nano; 2014 Jun; 8(6):6081-8. PubMed ID: 24815744
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Epitaxial growth of silicon nanowires using an aluminium catalyst.
    Wang Y; Schmidt V; Senz S; Gösele U
    Nat Nanotechnol; 2006 Dec; 1(3):186-9. PubMed ID: 18654184
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A generic approach for embedded catalyst-supported vertically aligned nanowire growth.
    Chung HS; Jung Y; Zimmerman TJ; Lee SH; Kim JW; Lee SH; Kim SC; Oh KH; Agarwal R
    Nano Lett; 2008 May; 8(5):1328-34. PubMed ID: 18363342
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Control of Si nanowire growth by oxygen.
    Kodambaka S; Hannon JB; Tromp RM; Ross FM
    Nano Lett; 2006 Jun; 6(6):1292-6. PubMed ID: 16771597
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Twin-free uniform epitaxial GaAs nanowires grown by a two-temperature process.
    Joyce HJ; Gao Q; Tan HH; Jagadish C; Kim Y; Zhang X; Guo Y; Zou J
    Nano Lett; 2007 Apr; 7(4):921-6. PubMed ID: 17335270
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Self-organized growth of Si/Silica/Er2Si2O7 core-shell nanowire heterostructures and their luminescence.
    Choi HJ; Shin JH; Suh K; Seong HK; Han HC; Lee JC
    Nano Lett; 2005 Dec; 5(12):2432-7. PubMed ID: 16351192
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Doping of Self-Catalyzed Nanowires under the Influence of Droplets.
    Zhang Y; Sun Z; Sanchez AM; Ramsteiner M; Aagesen M; Wu J; Kim D; Jurczak P; Huo S; Lauhon LJ; Liu H
    Nano Lett; 2018 Jan; 18(1):81-87. PubMed ID: 29206466
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Directed synthesis of germanium oxide nanowires by vapor-liquid-solid oxidation.
    Gunji M; Thombare SV; Hu S; McIntyre PC
    Nanotechnology; 2012 Sep; 23(38):385603. PubMed ID: 22947505
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Real-time observation of the solid-liquid-vapor dissolution of individual tin(IV) oxide nanowires.
    Hudak BM; Chang YJ; Yu L; Li G; Edwards DN; Guiton BS
    ACS Nano; 2014 Jun; 8(6):5441-8. PubMed ID: 24818706
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Synthesis of silica nanowires by active oxidation of silicon substrates.
    Ferlauto AS; Oliveira S; Silva EE; Magalhaes-Paniago R; Ladeira LO; Lacerda RG
    J Nanosci Nanotechnol; 2006 Mar; 6(3):791-5. PubMed ID: 16573139
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The role of NiOx overlayers on spontaneous growth of NiSix nanowires from Ni seed layers.
    Kang K; Kim SK; Kim CJ; Jo MH
    Nano Lett; 2008 Feb; 8(2):431-6. PubMed ID: 18189435
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Vapor-liquid-solid growth of endotaxial semiconductor nanowires.
    Li S; Huang X; Liu Q; Cao X; Huo F; Zhang H; Gan CL
    Nano Lett; 2012 Nov; 12(11):5565-70. PubMed ID: 23066984
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Designing Morphology in Epitaxial Silicon Nanowires: The Role of Gold, Surface Chemistry, and Phosphorus Doping.
    Kim S; Hill DJ; Pinion CW; Christesen JD; McBride JR; Cahoon JF
    ACS Nano; 2017 May; 11(5):4453-4462. PubMed ID: 28323413
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Large-scale, hot-filament-assisted synthesis of tungsten oxide and related transition metal oxide nanowires.
    Thangala J; Vaddiraju S; Bogale R; Thurman R; Powers T; Deb B; Sunkara MK
    Small; 2007 May; 3(5):890-6. PubMed ID: 17415736
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Control of gold surface diffusion on si nanowires.
    den Hertog MI; Rouviere JL; Dhalluin F; Desré PJ; Gentile P; Ferret P; Oehler F; Baron T
    Nano Lett; 2008 May; 8(5):1544-50. PubMed ID: 18422363
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effect of the growth conditions on the spatial features of Re nanowires produced by directional solidification.
    Milenkovic S; Hassel AW; Schneider A
    Nano Lett; 2006 Apr; 6(4):794-9. PubMed ID: 16608286
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Breakdown enhancement in silicon nanowire p-n junctions.
    Agarwal P; Vijayaraghavan MN; Neuilly F; Hijzen E; Hurkx GA
    Nano Lett; 2007 Apr; 7(4):896-9. PubMed ID: 17348715
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The temperature-controlled growth of In2O3 nanowires, nanotowers and ultra-long layered nanorods.
    Singh N; Zhang T; Lee PS
    Nanotechnology; 2009 May; 20(19):195605. PubMed ID: 19420644
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Influence of nanowire density on the shape and optical properties of ternary InGaAs nanowires.
    Kim Y; Joyce HJ; Gao Q; Tan HH; Jagadish C; Paladugu M; Zou J; Suvorova AA
    Nano Lett; 2006 Apr; 6(4):599-604. PubMed ID: 16608251
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Electrochemical properties of GaN nanowire electrodes--influence of doping and control by external bias.
    Wallys J; Hoffmann S; Furtmayr F; Teubert J; Eickhoff M
    Nanotechnology; 2012 Apr; 23(16):165701. PubMed ID: 22460768
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.