BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

215 related articles for article (PubMed ID: 18380667)

  • 1. Ammonium alters creatine transport and synthesis in a 3D culture of developing brain cells, resulting in secondary cerebral creatine deficiency.
    Braissant O; Cagnon L; Monnet-Tschudi F; Speer O; Wallimann T; Honegger P; Henry H
    Eur J Neurosci; 2008 Apr; 27(7):1673-85. PubMed ID: 18380667
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dissociation of AGAT, GAMT and SLC6A8 in CNS: relevance to creatine deficiency syndromes.
    Braissant O; Béard E; Torrent C; Henry H
    Neurobiol Dis; 2010 Feb; 37(2):423-33. PubMed ID: 19879361
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Creatine deficiency syndromes and the importance of creatine synthesis in the brain.
    Braissant O; Henry H; Béard E; Uldry J
    Amino Acids; 2011 May; 40(5):1315-24. PubMed ID: 21390529
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The blood-brain barrier transport and cerebral distribution of guanidinoacetate in rats: involvement of creatine and taurine transporters.
    Tachikawa M; Kasai Y; Yokoyama R; Fujinawa J; Ganapathy V; Terasaki T; Hosoya K
    J Neurochem; 2009 Oct; 111(2):499-509. PubMed ID: 19682207
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Diagnosis and treatment of brain creatine deficiency syndromes].
    Arias-Dimas A; Vilaseca MA; Artuch R; Ribes A; Campistol J
    Rev Neurol; 2006 Sep 1-15; 43(5):302-8. PubMed ID: 16941429
    [TBL] [Abstract][Full Text] [Related]  

  • 6. AGAT, GAMT and SLC6A8 distribution in the central nervous system, in relation to creatine deficiency syndromes: a review.
    Braissant O; Henry H
    J Inherit Metab Dis; 2008 Apr; 31(2):230-9. PubMed ID: 18392746
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Cerebral creatine transporter deficiency: an infradiagnosed neurometabolic disease].
    Campistol J; Arias-Dimas A; Poo P; Pineda M; Hoffman M; Vilaseca MA; Artuch R; Ribes A
    Rev Neurol; 2007 Mar 16-31; 44(6):343-7. PubMed ID: 17385170
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biochemical and clinical characteristics of creatine deficiency syndromes.
    Sykut-Cegielska J; Gradowska W; Mercimek-Mahmutoglu S; Stöckler-Ipsiroglu S
    Acta Biochim Pol; 2004; 51(4):875-82. PubMed ID: 15625559
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spatiotemporal expression of the creatine metabolism related genes agat, gamt and ct1 during zebrafish embryogenesis.
    Wang L; Zhang Y; Shao M; Zhang H
    Int J Dev Biol; 2007; 51(3):247-53. PubMed ID: 17486546
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Creatine synthesis and exchanges between brain cells: What can be learned from human creatine deficiencies and various experimental models?
    Hanna-El-Daher L; Braissant O
    Amino Acids; 2016 Aug; 48(8):1877-95. PubMed ID: 26861125
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ammonia toxicity to the brain: effects on creatine metabolism and transport and protective roles of creatine.
    Braissant O
    Mol Genet Metab; 2010; 100 Suppl 1():S53-8. PubMed ID: 20227315
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Creatine biosynthesis and transport in health and disease.
    Joncquel-Chevalier Curt M; Voicu PM; Fontaine M; Dessein AF; Porchet N; Mention-Mulliez K; Dobbelaere D; Soto-Ares G; Cheillan D; Vamecq J
    Biochimie; 2015 Dec; 119():146-65. PubMed ID: 26542286
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cerebral creatine deficiencies: a group of treatable intellectual developmental disorders.
    Stockler-Ipsiroglu S; van Karnebeek CD
    Semin Neurol; 2014 Jul; 34(3):350-6. PubMed ID: 25192512
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Disorders of creatine transport and metabolism.
    Longo N; Ardon O; Vanzo R; Schwartz E; Pasquali M
    Am J Med Genet C Semin Med Genet; 2011 Feb; 157C(1):72-8. PubMed ID: 21308988
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Cerebral creatine deficiency syndromes].
    Malheiro R; Diogo L; Garcia P; Fineza I; Oliveira G
    Acta Med Port; 2012; 25(6):389-98. PubMed ID: 23534590
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hyperammonemia induces transport of taurine and creatine and suppresses claudin-12 gene expression in brain capillary endothelial cells in vitro.
    Bélanger M; Asashima T; Ohtsuki S; Yamaguchi H; Ito S; Terasaki T
    Neurochem Int; 2007 Jan; 50(1):95-101. PubMed ID: 16956696
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Creatine synthesis and transport during rat embryogenesis: spatiotemporal expression of AGAT, GAMT and CT1.
    Braissant O; Henry H; Villard AM; Speer O; Wallimann T; Bachmann C
    BMC Dev Biol; 2005 May; 5():9. PubMed ID: 15918910
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Laboratory diagnosis of defects of creatine biosynthesis and transport.
    Verhoeven NM; Salomons GS; Jakobs C
    Clin Chim Acta; 2005 Nov; 361(1-2):1-9. PubMed ID: 16169544
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Endogenous synthesis and transport of creatine in the rat brain: an in situ hybridization study.
    Braissant O; Henry H; Loup M; Eilers B; Bachmann C
    Brain Res Mol Brain Res; 2001 Jan; 86(1-2):193-201. PubMed ID: 11165387
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Creatine biosynthesis and transport by the term human placenta.
    Ellery SJ; Della Gatta PA; Bruce CR; Kowalski GM; Davies-Tuck M; Mockler JC; Murthi P; Walker DW; Snow RJ; Dickinson H
    Placenta; 2017 Apr; 52():86-93. PubMed ID: 28454702
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.