BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 18380790)

  • 1. Development of thermotolerance requires interaction between polymerase-beta and heat shock proteins.
    Takahashi A; Yamakawa N; Mori E; Ohnishi K; Yokota S; Sugo N; Aratani Y; Koyama H; Ohnishi T
    Cancer Sci; 2008 May; 99(5):973-8. PubMed ID: 18380790
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Changes in the localization of heat shock protein 72 correlated with development of thermotolerance in human esophageal cancer cell line.
    Nonaka T; Akimoto T; Mitsuhashi N; Tamaki Y; Yokota S; Nakano T
    Anticancer Res; 2003; 23(6C):4677-87. PubMed ID: 14981913
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of a heat shock protein inhibitor KNK437 on heat sensitivity and heat tolerance in human squamous cell carcinoma cell lines differing in p53 status.
    Ohnishi K; Takahashi A; Yokota S; Ohnishi T
    Int J Radiat Biol; 2004 Aug; 80(8):607-14. PubMed ID: 15370972
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Benzylidene lactam compound, KNK437, a novel inhibitor of acquisition of thermotolerance and heat shock protein induction in human colon carcinoma cells.
    Yokota S; Kitahara M; Nagata K
    Cancer Res; 2000 Jun; 60(11):2942-8. PubMed ID: 10850441
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Examination of KNK437- and quercetin-mediated inhibition of heat shock-induced heat shock protein gene expression in Xenopus laevis cultured cells.
    Manwell LA; Heikkila JJ
    Comp Biochem Physiol A Mol Integr Physiol; 2007 Nov; 148(3):521-30. PubMed ID: 17681842
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Attenuation of chronic thermotolerance by KNK437, a benzylidene lactam compound, enhances thermal radiosensitization in mild temperature hyperthermia combined with low dose-rate irradiation.
    Sakurai H; Kitamoto Y; Saitoh J; Nonaka T; Ishikawa H; Kiyohara H; Shioya M; Fukushima M; Akimoto T; Hasegawa M; Nakano T
    Int J Radiat Biol; 2005 Sep; 81(9):711-8. PubMed ID: 16368649
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effects of KNK437, a novel inhibitor of heat shock protein synthesis, on the acquisition of thermotolerance in a murine transplantable tumor in vivo.
    Koishi M; Yokota S; Mae T; Nishimura Y; Kanamori S; Horii N; Shibuya K; Sasai K; Hiraoka M
    Clin Cancer Res; 2001 Jan; 7(1):215-9. PubMed ID: 11205912
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Heat-shock protein 40, a novel predictor of thermotolerance in murine cells.
    Kaneko R; Hattori H; Hayashi Y; Tohnai I; Ueda M; Ohtsuka K
    Radiat Res; 1995 Apr; 142(1):91-7. PubMed ID: 7899564
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Thermotolerance and the heat shock proteins.
    Burdon RH
    Symp Soc Exp Biol; 1987; 41():269-83. PubMed ID: 3332487
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Low pH suppresses synthesis of heat-shock proteins and thermotolerance.
    Hang H; Fox MH
    Radiat Res; 1994 Oct; 140(1):24-30. PubMed ID: 7938451
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thermotolerance and nuclear protein aggregation: protection against initial damage or better recovery?
    Stege GJ; Brunsting JF; Kampinga HH; Konings AW
    J Cell Physiol; 1995 Sep; 164(3):579-86. PubMed ID: 7650065
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of amino acid analogs on the development of thermotolerance and on thermotolerant cells.
    Laszlo A; Li GC
    J Cell Physiol; 1993 Feb; 154(2):419-32. PubMed ID: 8425921
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Induced thermotolerance in bovine two-cell embryos and the role of heat shock protein 70 in embryonic development.
    Al-Katanani YM; Hansen PJ
    Mol Reprod Dev; 2002 Jun; 62(2):174-80. PubMed ID: 11984827
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Thermotolerance attenuates heat-induced increases in [Ca2+]i and HSP-72 synthesis but not heat-induced intracellular acidification in human A-431 cells.
    Kiang JG; Ding XZ; McClain DE
    J Investig Med; 1996 Feb; 44(2):53-63. PubMed ID: 8689402
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of the effect of heat shock factor inhibitor, KNK437, on heat shock- and chemical stress-induced hsp30 gene expression in Xenopus laevis A6 cells.
    Voyer J; Heikkila JJ
    Comp Biochem Physiol A Mol Integr Physiol; 2008 Oct; 151(2):253-61. PubMed ID: 18675372
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Extensive repair of DNA double-strand breaks in cells deficient in the DNA-PK-dependent pathway of NHEJ after exclusion of heat-labile sites.
    Singh SK; Wu W; Wu W; Wang M; Iliakis G
    Radiat Res; 2009 Aug; 172(2):152-64. PubMed ID: 19630520
    [TBL] [Abstract][Full Text] [Related]  

  • 17. How do cells respond to their thermal environment?
    Lepock JR
    Int J Hyperthermia; 2005 Dec; 21(8):681-7. PubMed ID: 16338849
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The role of heat-shock proteins in thermotolerance.
    Parsell DA; Taulien J; Lindquist S
    Philos Trans R Soc Lond B Biol Sci; 1993 Mar; 339(1289):279-85; discussion 285-6. PubMed ID: 8098532
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Role of HSP70 in cellular thermotolerance.
    Beckham JT; Wilmink GJ; Mackanos MA; Takahashi K; Contag CH; Takahashi T; Jansen ED
    Lasers Surg Med; 2008 Dec; 40(10):704-15. PubMed ID: 19065555
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Heat shock proteins: role in thermotolerance, drug resistance, and relationship to DNA topoisomerases.
    Li GC
    NCI Monogr; 1987; (4):99-103. PubMed ID: 2819740
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.