These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 18380887)

  • 1. Microalgal mediation of ripple mobility.
    Friend PL; Lucas CH; Holligan PM; Collins MB
    Geobiology; 2008 Jan; 6(1):70-82. PubMed ID: 18380887
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microbial stabilization of riverine sediments by extracellular polymeric substances.
    Gerbersdorf SU; Jancke T; Westrich B; Paterson DM
    Geobiology; 2008 Jan; 6(1):57-69. PubMed ID: 18380886
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Carbohydrate production in relation to microphytobenthic biofilm development: an integrated approach in a tidal mesocosm.
    Orvain F; Galois R; Barnard C; Sylvestre A; Blanchard G; Sauriau PG
    Microb Ecol; 2003 Mar; 45(3):237-51. PubMed ID: 12658521
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effects of Phaeocystis globosa bloom on the dynamics of the mineralization processes in intertidal permeable sediment in the Eastern English Channel (Wimereux, France).
    Rauch M; Denis L; Dauvin JC
    Mar Pollut Bull; 2008 Jul; 56(7):1284-93. PubMed ID: 18514231
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Integrating field and laboratory approaches for ripple development in mixed sand-clay-EPS.
    Baas JH; Baker ML; Malarkey J; Bass SJ; Manning AJ; Hope JA; Peakall J; Lichtman ID; Ye L; Davies AG; Parsons DR; Paterson DM; Thorne PD
    Sedimentology; 2019 Dec; 66(7):2749-2768. PubMed ID: 31866696
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of deposit feeder Stichopus japonicus on algal bloom and organic matter contents of bottom sediments of the enclosed sea.
    Michio K; Kengo K; Yasunori K; Hitoshi M; Takayuki Y; Hideaki Y; Hiroshi S
    Mar Pollut Bull; 2003; 47(1-6):118-25. PubMed ID: 12787607
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Consequences of spring phytodetritus sedimentation on the benthic compartment along a depth gradient in the Eastern English Channel.
    Denis L; Desroy N
    Mar Pollut Bull; 2008 Nov; 56(11):1844-54. PubMed ID: 18814891
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Wave and sediment dynamics along a shallow subtidal sandy beach inhabited by modern stromatolites.
    Eckman JE; Andres MS; Marinelli RL; Bowlin E; Reid RP; Aspden RJ; Paterson DM
    Geobiology; 2008 Jan; 6(1):21-32. PubMed ID: 18380883
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of sandy vs muddy sediments on the vertical distribution of microphytobenthos in intertidal flats of the Fraser River Estuary, Canada.
    Yin K; Zetsche EM; Harrison PJ
    Environ Sci Pollut Res Int; 2016 Jul; 23(14):14196-209. PubMed ID: 27053045
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microbial extracellular polymeric substances (EPS) in fresh water sediments.
    Gerbersdorf SU; Westrich B; Paterson DM
    Microb Ecol; 2009 Aug; 58(2):334-49. PubMed ID: 19242746
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Small-Scale Distribution of Bacteria, Enzymatic Activities, and Organic Matter in Coastal Sediments.
    Danovaro R; Armeni M; Dell'Anno A; Fabiano M; Manini E; Marrale D; Pusceddu A; Vanucci S
    Microb Ecol; 2001 Aug; 42(2):177-185. PubMed ID: 12024280
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spatial self-organization on intertidal mudflats through biophysical stress divergence.
    Weerman EJ; van de Koppel J; Eppinga MB; Montserrat F; Liu QX; Herman PM
    Am Nat; 2010 Jul; 176(1):E15-32. PubMed ID: 20497053
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biogenic stabilization of intertidal sediments: the importance of extracellular polymeric substances produced by benthic diatoms.
    de Brouwer JF; Wolfstein K; Ruddy GK; Jones TE; Stal LJ
    Microb Ecol; 2005 May; 49(4):501-12. PubMed ID: 16052376
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The stabilisation potential of individual and mixed assemblages of natural bacteria and microalgae.
    Lubarsky HV; Hubas C; Chocholek M; Larson F; Manz W; Paterson DM; Gerbersdorf SU
    PLoS One; 2010 Nov; 5(11):e13794. PubMed ID: 21072186
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Heavy metal mobility in intertidal sediments of the Scheldt estuary: Field monitoring.
    Du Laing G; Meers E; Dewispelaere M; Vandecasteele B; Rinklebe J; Tack FM; Verloo MG
    Sci Total Environ; 2009 Apr; 407(8):2919-30. PubMed ID: 19167025
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The engineering potential of natural benthic bacterial assemblages in terms of the erosion resistance of sediments.
    Gerbersdorf SU; Manz W; Paterson DM
    FEMS Microbiol Ecol; 2008 Nov; 66(2):282-94. PubMed ID: 19049651
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Overproduction of microbial extracellular polymeric substances in subtropical intertidal sediments in response to endocrine disrupting chemicals.
    Yang L; Xiao S; Luan T; Tam NFY
    Sci Total Environ; 2018 May; 624():673-682. PubMed ID: 29272836
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Role of diatoms in the spatial-temporal distribution of intracellular nitrate in intertidal sediment.
    Stief P; Kamp A; de Beer D
    PLoS One; 2013; 8(9):e73257. PubMed ID: 24023845
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Kinetics of inorganic carbon utilization by microalgal biofilm in a flat plate photoreactor.
    Lin YH; Leu JY; Lan CR; Lin PH; Chang FL
    Chemosphere; 2003 Nov; 53(7):779-87. PubMed ID: 13129518
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modelling intertidal sediment transport for nutrient change and climate change scenarios.
    Wood R; Widdows J
    Sci Total Environ; 2003 Oct; 314-316():637-49. PubMed ID: 14499556
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.