BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

393 related articles for article (PubMed ID: 18380897)

  • 1. Evolutionary primacy of sodium bioenergetics.
    Mulkidjanian AY; Galperin MY; Makarova KS; Wolf YI; Koonin EV
    Biol Direct; 2008 Apr; 3():13. PubMed ID: 18380897
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rotary Ion-Translocating ATPases/ATP Synthases: Diversity, Similarities, and Differences.
    Zubareva VM; Lapashina AS; Shugaeva TE; Litvin AV; Feniouk BA
    Biochemistry (Mosc); 2020 Dec; 85(12):1613-1630. PubMed ID: 33705299
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inventing the dynamo machine: the evolution of the F-type and V-type ATPases.
    Mulkidjanian AY; Makarova KS; Galperin MY; Koonin EV
    Nat Rev Microbiol; 2007 Nov; 5(11):892-9. PubMed ID: 17938630
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electron cryomicroscopy observation of rotational states in a eukaryotic V-ATPase.
    Zhao J; Benlekbir S; Rubinstein JL
    Nature; 2015 May; 521(7551):241-5. PubMed ID: 25971514
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Proton translocation driven by ATP hydrolysis in V-ATPases.
    Kawasaki-Nishi S; Nishi T; Forgac M
    FEBS Lett; 2003 Jun; 545(1):76-85. PubMed ID: 12788495
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Animal plasma membrane energization by chemiosmotic H+ V-ATPases.
    Harvey WR; Wieczorek H
    J Exp Biol; 1997 Jan; 200(Pt 2):203-16. PubMed ID: 9050228
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Arginine residue at position 573 in Enterococcus hirae vacuolar-type ATPase NtpI subunit plays a crucial role in Na+ translocation.
    Kawano M; Igarashi K; Yamato I; Kakinuma Y
    J Biol Chem; 2002 Jul; 277(27):24405-10. PubMed ID: 11983695
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The past and present of sodium energetics: may the sodium-motive force be with you.
    Mulkidjanian AY; Dibrov P; Galperin MY
    Biochim Biophys Acta; 2008; 1777(7-8):985-92. PubMed ID: 18485887
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural organization of the V-ATPase and its implications for regulatory assembly and disassembly.
    Diepholz M; Börsch M; Böttcher B
    Biochem Soc Trans; 2008 Oct; 36(Pt 5):1027-31. PubMed ID: 18793183
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Deletion analysis of the subunit genes of V-type Na+-ATPase from Enterococcus hirae.
    Hosaka T; Takase K; Murata T; Kakinuma Y; Yamato I
    J Biochem; 2006 Jun; 139(6):1045-52. PubMed ID: 16788055
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The vacuolar H(+)-ATPase--one of the most fundamental ion pumps in nature.
    Nelson N
    J Exp Biol; 1992 Nov; 172():19-27. PubMed ID: 1337091
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structure and mechanism of vacuolar Na+-translocating ATPase from Enterococcus hirae.
    Murata T; Yamato I; Kakinuma Y
    J Bioenerg Biomembr; 2005 Dec; 37(6):411-3. PubMed ID: 16691474
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The amino-terminal domain of the E subunit of vacuolar H(+)-ATPase (V-ATPase) interacts with the H subunit and is required for V-ATPase function.
    Lu M; Vergara S; Zhang L; Holliday LS; Aris J; Gluck SL
    J Biol Chem; 2002 Oct; 277(41):38409-15. PubMed ID: 12163484
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evolutionary links between FliH/YscL-like proteins from bacterial type III secretion systems and second-stalk components of the FoF1 and vacuolar ATPases.
    Pallen MJ; Bailey CM; Beatson SA
    Protein Sci; 2006 Apr; 15(4):935-41. PubMed ID: 16522800
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Single amino acid substitution in the putative transmembrane helix V in KdpB of the KdpFABC complex of Escherichia coli uncouples ATPase activity and ion transport.
    Bramkamp M; Altendorf K
    Biochemistry; 2005 Jun; 44(23):8260-6. PubMed ID: 15938615
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The amino-terminal domain of the vacuolar proton-translocating ATPase a subunit controls targeting and in vivo dissociation, and the carboxyl-terminal domain affects coupling of proton transport and ATP hydrolysis.
    Kawasaki-Nishi S; Bowers K; Nishi T; Forgac M; Stevens TH
    J Biol Chem; 2001 Dec; 276(50):47411-20. PubMed ID: 11592965
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structure and function of vacuolar Na+-translocating ATPase in Enterococcus hirae.
    Kakinuma Y; Yamato I; Murata T
    J Bioenerg Biomembr; 1999 Feb; 31(1):7-14. PubMed ID: 10340844
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Resolving stepping rotation in Thermus thermophilus H(+)-ATPase/synthase with an essentially drag-free probe.
    Furuike S; Nakano M; Adachi K; Noji H; Kinosita K; Yokoyama K
    Nat Commun; 2011; 2():233. PubMed ID: 21407199
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Vacuolar and plasma membrane proton-adenosinetriphosphatases.
    Nelson N; Harvey WR
    Physiol Rev; 1999 Apr; 79(2):361-85. PubMed ID: 10221984
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The emerging structure of vacuolar ATPases.
    Drory O; Nelson N
    Physiology (Bethesda); 2006 Oct; 21():317-25. PubMed ID: 16990452
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.