These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
102 related articles for article (PubMed ID: 1838139)
1. Effect of incubation temperature on zearalenone production by strains of Fusarium crookwellense. Di Menna ME; Lauren DR; Smith WA Mycopathologia; 1991 Nov; 116(2):81-5. PubMed ID: 1838139 [TBL] [Abstract][Full Text] [Related]
2. Formation of fusarenone X, nivalenol, zearalenone, alpha-trans-zearalenol, beta-trans-zearalenol, and fusarin C by Fusarium crookwellense. Golinski P; Vesonder RF; Latus-Zietkiewicz D; Perkowski J Appl Environ Microbiol; 1988 Aug; 54(8):2147-8. PubMed ID: 2972254 [TBL] [Abstract][Full Text] [Related]
3. Mycotoxin formation by different geographic isolates of Fusarium crookwellense. Vesonder RF; Goliński P; Plattner R; Zietkiewicz DL Mycopathologia; 1991 Jan; 113(1):11-4. PubMed ID: 1826538 [TBL] [Abstract][Full Text] [Related]
4. Deoxynivalenol, acetyl deoxynivalenol, and zearalenone formation by Canadian isolates of Fusarium graminearum on solid substrates. Greenhalgh R; Neish GA; Miller JD Appl Environ Microbiol; 1983 Sep; 46(3):625-9. PubMed ID: 6227284 [TBL] [Abstract][Full Text] [Related]
5. Effect of cycling temperatures on the production of deoxynivalenol and zearalenone by Fusarium graminearum NRRL 5883. Ryu D; Bullerman LB J Food Prot; 1999 Dec; 62(12):1451-5. PubMed ID: 10606150 [TBL] [Abstract][Full Text] [Related]
6. Impact of cycling temperatures on Fusarium verticillioides and Fusarium graminearum growth and mycotoxins production in soybean. Garcia D; Barros G; Chulze S; Ramos AJ; Sanchis V; Marín S J Sci Food Agric; 2012 Dec; 92(15):2952-9. PubMed ID: 22555960 [TBL] [Abstract][Full Text] [Related]
7. [Occurrence of Fusarium strains and their mycotoxins on corn silage. 6. Formation of zearalenone and trichothecenes (type A) by indigenous Fusarium isolates]. Lepom P; Knabe O; Baath H Arch Tierernahr; 1990 Sep; 40(9):871-83. PubMed ID: 2151110 [TBL] [Abstract][Full Text] [Related]
8. Optimization for the Production of Deoxynivalenoland Zearalenone by Fusarium graminearum UsingResponse Surface Methodology. Wu L; Qiu L; Zhang H; Sun J; Hu X; Wang B Toxins (Basel); 2017 Feb; 9(2):. PubMed ID: 28208576 [TBL] [Abstract][Full Text] [Related]
9. Production of mycotoxins by selected Fusarium graminearum and F. crookwellense isolates. Sydenham EW; Marasas WF; Thiel PG; Shephard GS; Nieuwenhuis JJ Food Addit Contam; 1991; 8(1):31-41. PubMed ID: 1826664 [TBL] [Abstract][Full Text] [Related]
10. Production of trichothecenes and zearalenone by Fusarium species isolated from wheat. Chełkowski J; Visconti A; Mańka M Nahrung; 1984; 28(5):493-6. PubMed ID: 6237263 [TBL] [Abstract][Full Text] [Related]
11. [Relation between the production of deoxynivalenol and zearalenone and the mycelial growth of Fusarium graminearum on solid natural substrates]. Lori GA; Henning CP; Violante A; Alippi HE; Varsavsky E Microbiologia; 1990 Dec; 6(2):76-82. PubMed ID: 2151302 [TBL] [Abstract][Full Text] [Related]
12. Influence of temperature on zearalenone production by regional strains of Fusarium graminearum and Fusarium oxysporum in culture. Milano GD; Lopez TA Int J Food Microbiol; 1991 Aug; 13(4):329-33. PubMed ID: 1832924 [TBL] [Abstract][Full Text] [Related]
13. Trichothecenes and zearalenone production by Fusarium equiseti and Fusarium semitectum species isolated from Argentinean soybean. Barros G; Zanon MS; Palazzini JM; Haidukowski M; Pascale M; Chulze S Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2012; 29(9):1436-42. PubMed ID: 22830612 [TBL] [Abstract][Full Text] [Related]
14. Method for detecting production of zearalenone, zearalenol, T-2 toxin, and deoxynivalenol by Fusarium isolates. Richardson KE; Hagler WM; Hamilton PB Appl Environ Microbiol; 1984 Apr; 47(4):643-6. PubMed ID: 6232897 [TBL] [Abstract][Full Text] [Related]
15. Production of trichothecenes and zearalenone by isolates of Fusarium spp. from Argentinian maize. Molto GA; Gonzalez HH; Resnik SL; Pereyra Gonzalez A Food Addit Contam; 1997 Apr; 14(3):263-8. PubMed ID: 9135723 [TBL] [Abstract][Full Text] [Related]
16. Determination of mycotoxins produced by Fusarium isolates from banana fruits by capillary gas chromatography and high-performance liquid chromatography. Jiménez M; Mateo R J Chromatogr A; 1997 Aug; 778(1-2):363-72. PubMed ID: 9299747 [TBL] [Abstract][Full Text] [Related]
17. Influence of water activity and temperature on the production of zearalenone in corn by three Fusarium species. Jiménez M; Máñez M; Hernández E Int J Food Microbiol; 1996 Apr; 29(2-3):417-21. PubMed ID: 8796443 [TBL] [Abstract][Full Text] [Related]
18. Verification of the effectiveness of SCAR (sequence characterized amplified region) primers for the identification of Polish strains of Fusarium culmorum and their potential ability to produce B-trichothecenes and zearalenone. Baturo-Ciesniewska A; Suchorzynska M Int J Food Microbiol; 2011 Aug; 148(3):168-76. PubMed ID: 21664712 [TBL] [Abstract][Full Text] [Related]
19. Toxigenic potential of Fusarium culmorum strains isolated from French wheat. Bakan B; Pinson L; Cahagnier B; Melcion D; Sémon E; Richard-Molard D Food Addit Contam; 2001 Nov; 18(11):998-1003. PubMed ID: 11665742 [TBL] [Abstract][Full Text] [Related]
20. Masked trichothecene and zearalenone mycotoxins withstand digestion and absorption in the upper GI tract but are efficiently hydrolyzed by human gut microbiota in vitro. Gratz SW; Dinesh R; Yoshinari T; Holtrop G; Richardson AJ; Duncan G; MacDonald S; Lloyd A; Tarbin J Mol Nutr Food Res; 2017 Apr; 61(4):. PubMed ID: 27921366 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]