These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

95 related articles for article (PubMed ID: 18381594)

  • 1. The mechanical transduction of physiological strength electric fields.
    Hart FX
    Bioelectromagnetics; 2008 Sep; 29(6):447-55. PubMed ID: 18381594
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cytoskeletal forces produced by extremely low-frequency electric fields acting on extracellular glycoproteins.
    Hart FX
    Bioelectromagnetics; 2010 Jan; 31(1):77-84. PubMed ID: 19593781
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Integrins may serve as mechanical transducers for low-frequency electric fields.
    Hart FX
    Bioelectromagnetics; 2006 Sep; 27(6):505-8. PubMed ID: 16715526
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Change in properties of the glycocalyx affects the shear rate and stress distribution on endothelial cells.
    Wang W
    J Biomech Eng; 2007 Jun; 129(3):324-9. PubMed ID: 17536899
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanotransduction of flow-induced shear stress by endothelial glycocalyx fibers is torque determined.
    Liu X; Fan Y; Deng X
    ASAIO J; 2011; 57(6):487-94. PubMed ID: 21989421
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Glycoproteins bound to ion channels mediate detection of electric fields: a proposed mechanism and supporting evidence.
    Kolomytkin OV; Dunn S; Hart FX; Frilot C; Kolomytkin D; Marino AA
    Bioelectromagnetics; 2007 Jul; 28(5):379-85. PubMed ID: 17315160
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular change signal-to-noise criteria for interpreting experiments involving exposure of biological systems to weakly interacting electromagnetic fields.
    Vaughan TE; Weaver JC
    Bioelectromagnetics; 2005 May; 26(4):305-22. PubMed ID: 15832332
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cellular fluid mechanics and mechanotransduction.
    Tarbell JM; Weinbaum S; Kamm RD
    Ann Biomed Eng; 2005 Dec; 33(12):1719-23. PubMed ID: 16389519
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Roles of integrins and cytoskeleton in cellular mechanotransduction].
    Yang F; Li YH
    Space Med Med Eng (Beijing); 2002 Aug; 15(4):309-12. PubMed ID: 12425342
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A mechanism for action of oscillating electric fields on cells.
    Panagopoulos DJ; Messini N; Karabarbounis A; Philippetis AL; Margaritis LH
    Biochem Biophys Res Commun; 2000 Jun; 272(3):634-40. PubMed ID: 10860806
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A hypothetical mechanism of bone remodeling and modeling under electromagnetic loads.
    Qu C; Qin QH; Kang Y
    Biomaterials; 2006 Jul; 27(21):4050-7. PubMed ID: 16574223
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanotransduction involving multimodular proteins: converting force into biochemical signals.
    Vogel V
    Annu Rev Biophys Biomol Struct; 2006; 35():459-88. PubMed ID: 16689645
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Gauging the strength of power frequency fields against membrane electrical noise.
    Bier M
    Bioelectromagnetics; 2005 Oct; 26(7):595-609. PubMed ID: 16142767
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Keratinocyte galvanotaxis in combined DC and AC electric fields supports an electromechanical transduction sensing mechanism.
    Hart FX; Laird M; Riding A; Pullar CE
    Bioelectromagnetics; 2013 Feb; 34(2):85-94. PubMed ID: 22907479
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Shear stress in cells generated by ultrasound.
    Wu J
    Prog Biophys Mol Biol; 2007; 93(1-3):363-73. PubMed ID: 16928394
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Low-frequency transient electric and magnetic fields coupling to child body.
    Ozen S
    Radiat Prot Dosimetry; 2008; 128(1):62-7. PubMed ID: 17526911
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Vibro-magnetometry: theoretical aspects and simulations.
    Carneiro AO; Baffa O; Silva GT; Fatemi M
    IEEE Trans Ultrason Ferroelectr Freq Control; 2009 May; 56(5):1065-73. PubMed ID: 19473925
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantitative evaluations of mechanisms of radiofrequency interactions with biological molecules and processes.
    Sheppard AR; Swicord ML; Balzano Q
    Health Phys; 2008 Oct; 95(4):365-96. PubMed ID: 18784511
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Force-induced activation of talin and its possible role in focal adhesion mechanotransduction.
    Lee SE; Kamm RD; Mofrad MR
    J Biomech; 2007; 40(9):2096-106. PubMed ID: 17544431
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Current oscillation and chaotic dynamics in superlattices driven by crossed electric and magnetic fields.
    Wang C; Cao JC
    Chaos; 2005 Mar; 15(1):13111. PubMed ID: 15836265
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.