BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

92 related articles for article (PubMed ID: 183824)

  • 1. Differential inactivation of the "L" and "Ly+" amino acid transport systems by a sulfhydryl reagent and a photo-affinity probe.
    Hare JD; Marinetti GV; Meisler AI; Tometsko AM
    Biochim Biophys Acta; 1976 Sep; 443(3):485-93. PubMed ID: 183824
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The efflux of lysine from the basolateral membrane of human cultured intestinal cells (Caco-2) occurs by different mechanisms depending on the extracellular availability of amino acids.
    Ferruzza S; Ranaldi G; Di Girolamo M; Sambuy Y
    J Nutr; 1997 Jun; 127(6):1183-90. PubMed ID: 9187634
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Basolateral amino acid transport systems in the perfused exocrine pancreas: sodium-dependency and kinetic interactions between influx and efflux mechanisms.
    Mann GE; Peran S
    Biochim Biophys Acta; 1986 Jun; 858(2):263-74. PubMed ID: 3087423
    [TBL] [Abstract][Full Text] [Related]  

  • 4. System y+L-like activities account for high and low amino-acid transport phenotypes in chicken erythrocytes.
    Vargas M; Devés R
    J Membr Biol; 2001 Oct; 183(3):183-93. PubMed ID: 11696860
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inactivation of amino acid transport in rat hepatocytes and hepatoma cells by PCMBS.
    Chiles TC; Dudeck-Collart KL; Kilberg MS
    Am J Physiol; 1988 Sep; 255(3 Pt 1):C340-5. PubMed ID: 2844094
    [TBL] [Abstract][Full Text] [Related]  

  • 6. System A transport activity in normal rat hepatocytes and transformed liver cells: substrate protection from inactivation by sulfhydryl-modifying reagents.
    Chiles TC; Kilberg MS
    J Cell Physiol; 1986 Dec; 129(3):321-8. PubMed ID: 3023402
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Separation of phenylalanine transport events by using selective inhibitors, and identification of a specific uncoupler activity in Yersinia pestis.
    Smith PB; Montie TC
    J Bacteriol; 1975 Jun; 122(3):1053-61. PubMed ID: 1150617
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chemical modification of the neutral amino acid transport system L of Chinese hamster ovary cells with p-chloromercuribenzene sulfonate.
    Campbell GS; Yu JH; Oxender DL
    J Biol Chem; 1992 Jun; 267(18):12496-500. PubMed ID: 1319998
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inhibition of amino acid transport in rabbit intestine by p-chloromercuriphenyl sulfonic acid.
    Schaeffer JF; Preston RL; Curran PF
    J Gen Physiol; 1973 Aug; 62(2):131-46. PubMed ID: 4722564
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transport of a large neutral amino acid in a human intestinal epithelial cell line (Caco-2): uptake and efflux of phenylalanine.
    Hu M; Borchardt RT
    Biochim Biophys Acta; 1992 Jun; 1135(3):233-44. PubMed ID: 1623010
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sodium ion-dependent amino acid transport in membrane vesicles of Bacillus stearothermophilus.
    Heyne RI; de Vrij W; Crielaard W; Konings WN
    J Bacteriol; 1991 Jan; 173(2):791-800. PubMed ID: 1670936
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Regulation of amino acid transport in chick embryo heart cells. 3. Formal identification of the A mediation as an adaptive transport system.
    Gazzola GC; Franchi-Gazzola R; Ronchi P; Guidotti GG
    Biochim Biophys Acta; 1973 Jun; 311(2):292-301. PubMed ID: 4736914
    [No Abstract]   [Full Text] [Related]  

  • 13. Discrimination of parallel neutral amino acid transport systems in the basolateral membrane of cat salivary epithelium.
    Mann GE; Yudilevich DL
    J Physiol; 1984 Feb; 347():111-27. PubMed ID: 6707951
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Uptake of L-leucine and L-phenylalanine across the basolateral cell surface in isolated oxyntic glands.
    Sobrevía L; Medina V; Reinicke K; Bravo I
    Biochim Biophys Acta; 1992 May; 1106(2):257-63. PubMed ID: 1596506
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Kinetic properties, nutrient-dependent regulation and energy coupling of amino-acid transport systems in Penicillium cyclopium.
    Roos W
    Biochim Biophys Acta; 1989 Jan; 978(1):119-33. PubMed ID: 2563328
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Relationship between thyroid hormone transport and neutral amino acid transport in JAR human choriocarcinoma cells.
    Prasad PD; Leibach FH; Mahesh VB; Ganapathy V
    Endocrinology; 1994 Feb; 134(2):574-81. PubMed ID: 8299556
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Postnatal amino acid uptake by the rat small intestine. Changes in membrane transport systems for amino acids associated with maturation of jejunal morphology.
    Murphy S; Daniels VG
    J Dev Physiol; 1979 Apr; 1(2):111-26. PubMed ID: 121999
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Neutral amino acid transport in surface membrane vesicles isolated from mouse fibroblasts: intrinsic and extrinsic models of regulation.
    Lever JE
    J Supramol Struct; 1977; 6(1):103-24. PubMed ID: 197316
    [No Abstract]   [Full Text] [Related]  

  • 19. Regulation of System B0 amino-acid-transport activity in the renal epithelial cell line NBL-1 and concomitant changes in SAAT1 hybridizing transcripts.
    Plakidou-Dymock S; Tanner MJ; McGivan JD
    Biochem J; 1994 Jul; 301 ( Pt 2)(Pt 2):399-405. PubMed ID: 7519009
    [TBL] [Abstract][Full Text] [Related]  

  • 20. N-ethylmaleimide discriminates between two lysine transport systems in human erythrocytes.
    Devés R; Angelo S; Chávez P
    J Physiol; 1993 Aug; 468():753-66. PubMed ID: 8254535
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.