These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
123 related articles for article (PubMed ID: 18382497)
1. Eigenfunctions of the complex fractional Fourier transform obtained in the context of quantum optics. Fan HY; Hu LY; Wang JS J Opt Soc Am A Opt Image Sci Vis; 2008 Apr; 25(4):974-8. PubMed ID: 18382497 [TBL] [Abstract][Full Text] [Related]
2. Fractional Fourier transforms in two dimensions. Simon R; Wolf KB J Opt Soc Am A Opt Image Sci Vis; 2000 Dec; 17(12):2368-81. PubMed ID: 11140497 [TBL] [Abstract][Full Text] [Related]
3. Eigenfunctions of the offset Fourier, fractional Fourier, and linear canonical transforms. Pei SC; Ding JJ J Opt Soc Am A Opt Image Sci Vis; 2003 Mar; 20(3):522-32. PubMed ID: 12630838 [TBL] [Abstract][Full Text] [Related]
4. Eigenfunctions and self-imaging phenomena of the two-dimensional nonseparable linear canonical transform. Ding JJ; Pei SC J Opt Soc Am A Opt Image Sci Vis; 2011 Feb; 28(2):82-95. PubMed ID: 21293514 [TBL] [Abstract][Full Text] [Related]
7. Short-time fractional Fourier methods for the time-frequency representation of chirp signals. Capus C; Brown K J Acoust Soc Am; 2003 Jun; 113(6):3253-63. PubMed ID: 12822798 [TBL] [Abstract][Full Text] [Related]
8. Fractional Fourier transform of flat-topped multi-Gaussian beams. Gao YQ; Zhu BQ; Liu DZ; Lin ZQ J Opt Soc Am A Opt Image Sci Vis; 2010 Feb; 27(2):358-65. PubMed ID: 20126248 [TBL] [Abstract][Full Text] [Related]
9. Classical versus complex fractional Fourier transformation. Dragoman D J Opt Soc Am A Opt Image Sci Vis; 2009 Feb; 26(2):274-7. PubMed ID: 19183677 [TBL] [Abstract][Full Text] [Related]
10. The fractional Fourier transform as a simulation tool for lens-based X-ray microscopy. Pedersen AF; Simons H; Detlefs C; Poulsen HF J Synchrotron Radiat; 2018 May; 25(Pt 3):717-728. PubMed ID: 29714181 [TBL] [Abstract][Full Text] [Related]
11. Fractional Hankel transform studied by charge-amplitude state representations and complex fractional Fourier transformation. Fan HY Opt Lett; 2003 Nov; 28(22):2177-9. PubMed ID: 14649933 [TBL] [Abstract][Full Text] [Related]
12. Ince-Gaussian series representation of the two-dimensional fractional Fourier transform. Bandres MA; Gutiérrez-Vega JC Opt Lett; 2005 Mar; 30(5):540-2. PubMed ID: 15789729 [TBL] [Abstract][Full Text] [Related]
13. Fractional Gabor transform. Zhang Y; Gu BY; Dong BZ; Yang GZ; Ren H; Zhang X; Liu S Opt Lett; 1997 Nov; 22(21):1583-5. PubMed ID: 18188303 [TBL] [Abstract][Full Text] [Related]
14. New families of Fourier eigenfunctions for steerable filtering. Papari G; Campisi P; Petkov N IEEE Trans Image Process; 2012 Jun; 21(6):2931-43. PubMed ID: 22167631 [TBL] [Abstract][Full Text] [Related]
15. Fractional Fourier transform of Ince-Gaussian beams. Zhou G J Opt Soc Am A Opt Image Sci Vis; 2009 Dec; 26(12):2586-91. PubMed ID: 19956328 [TBL] [Abstract][Full Text] [Related]
16. Implementation of quantum and classical discrete fractional Fourier transforms. Weimann S; Perez-Leija A; Lebugle M; Keil R; Tichy M; Gräfe M; Heilmann R; Nolte S; Moya-Cessa H; Weihs G; Christodoulides DN; Szameit A Nat Commun; 2016 Mar; 7():11027. PubMed ID: 27006089 [TBL] [Abstract][Full Text] [Related]
17. Discrete normalized Bargmann transform through the gyrator transform. Uriostegui K J Opt Soc Am A Opt Image Sci Vis; 2020 Jun; 37(6):951-958. PubMed ID: 32543595 [TBL] [Abstract][Full Text] [Related]
18. Eigenmodes of fractional Hankel transform derived by the entangled-state method. Fan HY; Lu HL Opt Lett; 2003 May; 28(9):680-2. PubMed ID: 12747705 [TBL] [Abstract][Full Text] [Related]
19. Parameter estimation of linear frequency modulation signals based on sampling theorem and fractional broadening. Liu X; Han J; Wang C; Xiao B Rev Sci Instrum; 2019 Jan; 90(1):014702. PubMed ID: 30709189 [TBL] [Abstract][Full Text] [Related]
20. Propagation of Bessel-Gaussian beams through a double-apertured fractional Fourier transform optical system. Tang B; Jiang C; Zhu H J Opt Soc Am A Opt Image Sci Vis; 2012 Aug; 29(8):1728-33. PubMed ID: 23201891 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]