These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 18382568)

  • 1. Design and fabrication of diffractive microlens arrays with continuous relief for parallel laser direct writing.
    Tan J; Shan M; Zhao C; Liu J
    Appl Opt; 2008 Apr; 47(10):1430-3. PubMed ID: 18382568
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modeling focusing characteristics of low Fnumber diffractive optical elements with continuous relief fabricated by laser direct writing.
    Shan M; Tan J
    Opt Express; 2007 Dec; 15(25):17032-7. PubMed ID: 19550995
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Femtosecond laser one-step direct-writing cylindrical microlens array on fused silica.
    Luo Z; Duan J; Guo C
    Opt Lett; 2017 Jun; 42(12):2358-2361. PubMed ID: 28614309
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Zone-boundary optimization for direct laser writing of continuous-relief diffractive optical elements.
    Korolkov VP; Nasyrov RK; Shimansky RV
    Appl Opt; 2006 Jan; 45(1):53-62. PubMed ID: 16422320
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multilevel diffractive microlens fabrication by one-step laser-assisted chemical etching upon high-energy-beam sensitive glass.
    Wang MR; Su H
    Opt Lett; 1998 Jun; 23(11):876-8. PubMed ID: 18087371
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analysis and optimization of fabrication of continuous-relief diffractive optical elements.
    Hessler T; Rossi M; Kunz RE; Gale MT
    Appl Opt; 1998 Jul; 37(19):4069-79. PubMed ID: 18285842
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Single-step fabrication of continuous surface relief micro-optical elements in hybrid sol-gel glass by laser direct writing.
    Yu W; Yuan X; Ngo N; Que W; Cheong W; Koudriachov V
    Opt Express; 2002 May; 10(10):443-8. PubMed ID: 19436379
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lithographic fabrication of large diffractive optical elements on a concave lens surface.
    Xie Y; Lu Z; Li F; Zhao J; Weng Z
    Opt Express; 2002 Oct; 10(20):1043-7. PubMed ID: 19451962
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fill-factor improvement of Si CMOS single-photon avalanche diode detector arrays by integration of diffractive microlens arrays.
    Intermite G; McCarthy A; Warburton RE; Ren X; Villa F; Lussana R; Waddie AJ; Taghizadeh MR; Tosi A; Zappa F; Buller GS
    Opt Express; 2015 Dec; 23(26):33777-91. PubMed ID: 26832039
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Resonance-domain diffractive microlens arrays.
    Barlev O; Golub MA
    Appl Opt; 2018 Jul; 57(19):5299-5306. PubMed ID: 30117818
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High fill factor microlens array fabrication using direct laser writing and its application in wavefront detection.
    Huang Y; Qin Y; Tu P; Zhang Q; Zhao M; Yang Z
    Opt Lett; 2020 Aug; 45(16):4460-4463. PubMed ID: 32796983
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Generation of large-diameter diffractive elements with laser pattern generation.
    Bowen JP; Michaels RL; Blough CG
    Appl Opt; 1997 Dec; 36(34):8970-5. PubMed ID: 18264451
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hybrid microdiffractive-microrefractive lens with a continuous relief fabricated by use of focused-ion-beam milling for single-mode fiber coupling.
    Fu YQ; Bryan NK
    Appl Opt; 2001 Nov; 40(32):5872-6. PubMed ID: 18364879
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Design and fabrication of a diffractive beam splitter for dual-wavelength and concurrent irradiation of process points.
    Amako J; Shinozaki Y
    Opt Express; 2016 Jul; 24(14):16111-22. PubMed ID: 27410878
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hexagonal microlens array fabricated by direct laser writing and inductively coupled plasma etching on organic light emitting devices to enhance the outcoupling efficiency.
    Kuang D; Zhang X; Gui M; Fang Z
    Appl Opt; 2009 Feb; 48(5):974-8. PubMed ID: 19209213
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Replication of high refractive index glass microlens array by imprinting in conjunction with laser assisted rapid surface heating for high resolution confocal microscopy imaging.
    Kim T; Bin Mohd Zawawi MZ; Shin R; Kim D; Choi W; Park C; Kang S
    Opt Express; 2019 Jun; 27(13):18869-18882. PubMed ID: 31252822
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Integrated Double-Sided Random Microlens Array Used for Laser Beam Homogenization.
    Yuan W; Xu C; Xue L; Pang H; Cao A; Fu Y; Deng Q
    Micromachines (Basel); 2021 Jun; 12(6):. PubMed ID: 34207625
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Arrays of anamorphic phase-matched Fresnel elements for diode-to-fiber coupling.
    Rossi M; Bona GL; Kunz RE
    Appl Opt; 1995 May; 34(14):2483-8. PubMed ID: 21052384
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Variable focus convex microlens array on K9 glass substrate based on femtosecond laser processing and hot embossing lithography.
    Chen Z; Yuan H; Wu P; Zhang W; Juodkazis S; Huang H; Cao X
    Opt Lett; 2022 Jan; 47(1):22-25. PubMed ID: 34951873
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fabrication of silicon nanowire arrays by near-field laser ablation and metal-assisted chemical etching.
    Brodoceanu D; Alhmoud HZ; Elnathan R; Delalat B; Voelcker NH; Kraus T
    Nanotechnology; 2016 Feb; 27(7):075301. PubMed ID: 26778665
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.