BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

375 related articles for article (PubMed ID: 18382893)

  • 1. Effects of physical activities on biochemical and biomechanical properties of tendons in two commercial types of chickens.
    Moussa M; Swider P; Babilé R; Fernandez X; Rémignon H
    Connect Tissue Res; 2008; 49(2):76-84. PubMed ID: 18382893
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biochemical and biomechanical properties of tendons in two commercial types of chickens.
    Moussa M; Babilé R; Fernandez X; Rémignon H
    Animal; 2007 Aug; 1(7):983-8. PubMed ID: 22444800
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effect of uniform heating on the biomechanical properties of the intervertebral disc in a porcine model.
    Wang JC; Kabo JM; Tsou PM; Halevi L; Shamie AN
    Spine J; 2005; 5(1):64-70. PubMed ID: 15653086
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of passive stretching on the biochemical and biomechanical properties of calcaneal tendon of rats.
    de Almeida FM; Tomiosso TC; Nakagaki WR; Gomes L; Matiello-Rosa SM; Pimentel ER
    Connect Tissue Res; 2009; 50(5):279-84. PubMed ID: 19863386
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effect of age and spontaneous exercise on the biomechanical and biochemical properties of chicken superficial digital flexor tendon.
    Romero Nakagaki W; Rosa Pimentel E; Pereira Benevides G; Gomes L
    Connect Tissue Res; 2010 Aug; 51(4):265-73. PubMed ID: 20175711
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biomechanical and biochemical properties of chicken calcaneal tendon under effect of age and nonforced active exercise.
    Nakagaki WR; Biancalana A; Benevides GP; Gomes L
    Connect Tissue Res; 2007; 48(5):219-28. PubMed ID: 17882697
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of short-term immobilization versus continuous passive motion on the biomechanical and biochemical properties of the rabbit tendon.
    Loitz BJ; Zernicke RF; Vailas AC; Kody MH; Meals RA
    Clin Orthop Relat Res; 1989 Jul; (244):265-71. PubMed ID: 2743669
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Temporary tendon strengthening by preconditioning.
    Teramoto A; Luo ZP
    Clin Biomech (Bristol, Avon); 2008 Jun; 23(5):619-22. PubMed ID: 18192094
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Skeletal muscle adaptations and biomechanical properties of tendons in response to jump exercise in rabbits.
    Gondret F; Hernandez P; Rémignon H; Combes S
    J Anim Sci; 2009 Feb; 87(2):544-53. PubMed ID: 18849388
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cross-linking in collagen by nonenzymatic glycation increases the matrix stiffness in rabbit achilles tendon.
    Reddy GK
    Exp Diabesity Res; 2004; 5(2):143-53. PubMed ID: 15203885
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Role of extracellular matrix in adaptation of tendon and skeletal muscle to mechanical loading.
    Kjaer M
    Physiol Rev; 2004 Apr; 84(2):649-98. PubMed ID: 15044685
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Glycation-induced matrix stability in the rabbit achilles tendon.
    Reddy GK; Stehno-Bittel L; Enwemeka CS
    Arch Biochem Biophys; 2002 Mar; 399(2):174-80. PubMed ID: 11888203
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Semitendinosus regrowth: biochemical, ultrastructural, and physiological characterization of the regenerate tendon.
    Gill SS; Turner MA; Battaglia TC; Leis HT; Balian G; Miller MD
    Am J Sports Med; 2004; 32(5):1173-81. PubMed ID: 15262639
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biomechanical and ultrastructural studies on the elastic wing tendon from the domestic fowl.
    Oakes VW; Bialkower B
    J Anat; 1977 Apr; 123(Pt 2):369-87. PubMed ID: 870474
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparative study of the characteristics and properties of tendinocytes derived from three tendons in the equine forelimb.
    Hosaka YZ; Takahashi H; Uratsuji T; Tangkawattana P; Ueda H; Takehana K
    Tissue Cell; 2010 Feb; 42(1):9-17. PubMed ID: 19640554
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biomechanical consequences of scaling.
    Biewener AA
    J Exp Biol; 2005 May; 208(Pt 9):1665-76. PubMed ID: 15855398
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Collagen fibril diameter distribution does not reflect changes in the mechanical properties of in vitro stress-deprived tendons.
    Lavagnino M; Arnoczky SP; Frank K; Tian T
    J Biomech; 2005 Jan; 38(1):69-75. PubMed ID: 15519341
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Canine tendon studies. II. Biomechanical evaluation of normal and regrown canine tendons.
    Walker P; Amstutz HC; Rubinfeld M
    J Biomed Mater Res; 1976 Jan; 10(1):61-76. PubMed ID: 1249090
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The biomechanical effects of limb lengthening and botulinum toxin type A on rabbit tendon.
    Olabisi RM; Best TM; Hurschler C; Vanderby R; Noonan KJ
    J Biomech; 2010 Dec; 43(16):3177-82. PubMed ID: 20719314
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analysis of mineral deposition in turkey tendons and self-assembled collagen fibers using mechanical techniques.
    Freeman JW; Silver FH
    Connect Tissue Res; 2004; 45(3):131-41. PubMed ID: 15512767
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.