These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
294 related articles for article (PubMed ID: 18382990)
1. Bone development and its relation to fracture repair. The role of mesenchymal osteoblasts and surface osteoblasts. Shapiro F Eur Cell Mater; 2008 Apr; 15():53-76. PubMed ID: 18382990 [TBL] [Abstract][Full Text] [Related]
2. Woven bone overview: structural classification based on its integral role in developmental, repair and pathological bone formation throughout vertebrate groups. Shapiro F; Wu JY Eur Cell Mater; 2019 Oct; 38():137-167. PubMed ID: 31571191 [TBL] [Abstract][Full Text] [Related]
3. Cortical bone repair. The relationship of the lacunar-canalicular system and intercellular gap junctions to the repair process. Shapiro F J Bone Joint Surg Am; 1988 Aug; 70(7):1067-81. PubMed ID: 3042791 [TBL] [Abstract][Full Text] [Related]
4. Histopathology of osteogenesis imperfecta bone. Supramolecular assessment of cells and matrices in the context of woven and lamellar bone formation using light, polarization and ultrastructural microscopy. Shapiro F; Maguire K; Swami S; Zhu H; Flynn E; Wang J; Wu JY Bone Rep; 2021 Jun; 14():100734. PubMed ID: 33665234 [TBL] [Abstract][Full Text] [Related]
5. Impaired intramembranous bone formation during bone repair in the absence of tumor necrosis factor-alpha signaling. Gerstenfeld LC; Cho TJ; Kon T; Aizawa T; Cruceta J; Graves BD; Einhorn TA Cells Tissues Organs; 2001; 169(3):285-94. PubMed ID: 11455125 [TBL] [Abstract][Full Text] [Related]
6. Static and dynamic osteogenesis. Marotti G Ital J Anat Embryol; 2010; 115(1-2):123-6. PubMed ID: 21073001 [TBL] [Abstract][Full Text] [Related]
7. Bmp2 conditional knockout in osteoblasts and endothelial cells does not impair bone formation after injury or mechanical loading in adult mice. McBride-Gagyi SH; McKenzie JA; Buettmann EG; Gardner MJ; Silva MJ Bone; 2015 Dec; 81():533-543. PubMed ID: 26344756 [TBL] [Abstract][Full Text] [Related]
8. TNF-alpha mediates p38 MAP kinase activation and negatively regulates bone formation at the injured growth plate in rats. Zhou FH; Foster BK; Zhou XF; Cowin AJ; Xian CJ J Bone Miner Res; 2006 Jul; 21(7):1075-88. PubMed ID: 16813528 [TBL] [Abstract][Full Text] [Related]
9. The roles of vascular endothelial growth factor in bone repair and regeneration. Hu K; Olsen BR Bone; 2016 Oct; 91():30-8. PubMed ID: 27353702 [TBL] [Abstract][Full Text] [Related]
10. Histological evolution of the regenerate during bone transport: an experimental study in sheep. López-Pliego EM; Giráldez-Sánchez MÁ; Mora-Macías J; Reina-Romo E; Domínguez J Injury; 2016 Sep; 47 Suppl 3():S7-S14. PubMed ID: 27692111 [TBL] [Abstract][Full Text] [Related]
11. Osteoblast recruitment to sites of bone formation in skeletal development, homeostasis, and regeneration. Dirckx N; Van Hul M; Maes C Birth Defects Res C Embryo Today; 2013 Sep; 99(3):170-91. PubMed ID: 24078495 [TBL] [Abstract][Full Text] [Related]
12. Collagens VI and XII form complexes mediating osteoblast interactions during osteogenesis. Izu Y; Ezura Y; Koch M; Birk DE; Noda M Cell Tissue Res; 2016 Jun; 364(3):623-635. PubMed ID: 26753503 [TBL] [Abstract][Full Text] [Related]
13. The role of bone morphogenetic proteins BMP-2 and BMP-4 and their related postreceptor signaling system (Smads) in distraction osteogenesis of the mandible. Farhadieh RD; Gianoutsos MP; Yu Y; Walsh WR J Craniofac Surg; 2004 Sep; 15(5):714-8. PubMed ID: 15346005 [TBL] [Abstract][Full Text] [Related]
14. The role of pleiotrophin in bone repair. Lamprou M; Kaspiris A; Panagiotopoulos E; Giannoudis PV; Papadimitriou E Injury; 2014 Dec; 45(12):1816-23. PubMed ID: 25456495 [TBL] [Abstract][Full Text] [Related]
15. Biology of Bone Formation, Fracture Healing, and Distraction Osteogenesis. Runyan CM; Gabrick KS J Craniofac Surg; 2017 Jul; 28(5):1380-1389. PubMed ID: 28562424 [TBL] [Abstract][Full Text] [Related]
16. Mature osteoblasts in human non-union fractures express collagen type III. Lawton DM; Andrew JG; Marsh DR; Hoyland JA; Freemont AJ Mol Pathol; 1997 Aug; 50(4):194-7. PubMed ID: 9350302 [TBL] [Abstract][Full Text] [Related]
17. Gli1 identifies osteogenic progenitors for bone formation and fracture repair. Shi Y; He G; Lee WC; McKenzie JA; Silva MJ; Long F Nat Commun; 2017 Dec; 8(1):2043. PubMed ID: 29230039 [TBL] [Abstract][Full Text] [Related]
18. Bone and cartilage formation in an experimental model of distraction osteogenesis. Jazrawi LM; Majeska RJ; Klein ML; Kagel E; Stromberg L; Einhorn TA J Orthop Trauma; 1998 Feb; 12(2):111-6. PubMed ID: 9503300 [TBL] [Abstract][Full Text] [Related]
19. The in vitro and in vivo effects of nicotine on bone, bone cells and fracture repair. Kallala R; Barrow J; Graham SM; Kanakaris N; Giannoudis PV Expert Opin Drug Saf; 2013 Mar; 12(2):209-33. PubMed ID: 23410538 [TBL] [Abstract][Full Text] [Related]
20. A new role for the chondrocyte in fracture repair: endochondral ossification includes direct bone formation by former chondrocytes. Scammell BE; Roach HI J Bone Miner Res; 1996 Jun; 11(6):737-45. PubMed ID: 8725170 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]