BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 18383018)

  • 1. High-resolution computer simulation of electrophoretic mobilization in isoelectric focusing.
    Thormann W; Mosher RA
    Electrophoresis; 2008 Apr; 29(8):1676-86. PubMed ID: 18383018
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High-resolution computer simulation of the dynamics of isoelectric focusing using carrier ampholytes: focusing with concurrent electrophoretic mobilization is an isotachophoretic process.
    Thormann W; Mosher RA
    Electrophoresis; 2006 Mar; 27(5-6):968-83. PubMed ID: 16523465
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High-resolution computer simulation of the dynamics of isoelectric focusing: in quest of more realistic input parameters for carrier ampholytes.
    Mosher RA; Thormann W
    Electrophoresis; 2008 Mar; 29(5):1036-47. PubMed ID: 18219653
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High-resolution computer simulation of the dynamics of isoelectric focusing of proteins.
    Thormann W; Huang T; Pawliszyn J; Mosher RA
    Electrophoresis; 2004 Jan; 25(2):324-37. PubMed ID: 14743485
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Instabilities of the pH gradient in carrier ampholyte-based isoelectric focusing: Elucidation of the contributing electrokinetic processes by computer simulation.
    Thormann W; Mosher RA
    Electrophoresis; 2021 Apr; 42(7-8):814-833. PubMed ID: 33184847
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modeling of electroosmotic and electrophoretic mobilization in capillary and microchip isoelectric focusing.
    Thormann W; Caslavska J; Mosher RA
    J Chromatogr A; 2007 Jul; 1155(2):154-63. PubMed ID: 17307189
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-resolution dynamic computer simulation analysis of the behavior of sample components with pI values outside the pH gradient established by carrier ampholyte CIEF.
    Thormann W; Kilár F
    Electrophoresis; 2013 Mar; 34(5):716-24. PubMed ID: 23229109
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sampling strategies for capillary isoelectric focusing with electroosmotic zone mobilization assessed by high-resolution dynamic computer simulation.
    Takácsi-Nagy A; Kilár F; Páger C; Mosher RA; Thormann W
    Electrophoresis; 2012 Mar; 33(6):970-80. PubMed ID: 22655305
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Recent developments in capillary isoelectric focusing with whole-column imaging detection.
    Fang X; Tragas C; Wu J; Mao Q; Pawliszyn J
    Electrophoresis; 1998 Oct; 19(13):2290-5. PubMed ID: 9788311
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electrically controlled focusing of proteins and ampholytes between two modified electrolytes. Computer simulation.
    Deml M; Pospíchal J
    Appl Theor Electrophor; 1994; 4(3):107-15. PubMed ID: 7612692
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Investigation of the pH gradient formation and cathodic drift in microchip isoelectric focusing with imaged UV detection.
    Xu Z; Okabe N; Arai A; Hirokawa T
    Electrophoresis; 2010 Oct; 31(21):3558-65. PubMed ID: 20925054
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High-resolution computer simulation of the dynamics of isoelectric focusing using carrier ampholytes: the post-separation stabilizing phase revisited.
    Mosher RA; Thormann W
    Electrophoresis; 2002 Jun; 23(12):1803-14. PubMed ID: 12116123
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of ampholyte concentration on protein behavior in on-chip isoelectric focusing.
    Shim J; Dutta P; Ivory CF
    Electrophoresis; 2008 Mar; 29(5):1026-35. PubMed ID: 18257108
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Experimental and theoretical dynamics of isoelectric focusing: IV. Cathodic, anodic and symmetrical drifts of the pH gradient.
    Mosher RA; Thormann W
    Electrophoresis; 1990 Sep; 11(9):717-23. PubMed ID: 2257843
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Finite sample effect in temperature gradient focusing.
    Lin H; Shackman JG; Ross D
    Lab Chip; 2008 Jun; 8(6):969-78. PubMed ID: 18497919
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Carrier ampholytes rehabilitated: gel isoelectric focusing on pH gradients visualized in real-time by automated fluorescence scanning in the HPGE-1000 apparatus.
    Gombocz E; Cortez E
    Electrophoresis; 1999 Jun; 20(7):1365-72. PubMed ID: 10424457
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrophoretic mobilization in capillary isoelectric focusing by a weak acid or an acidic ampholyte as catholyte assessed by computer simulation.
    Thormann W
    Electrophoresis; 2023 Apr; 44(7-8):656-666. PubMed ID: 36448503
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of ampholyte dissociation constants on protein separation in on-chip isoelectric focusing.
    Shim J; Dutta P; Ivory CF
    J Nanosci Nanotechnol; 2008 Jul; 8(7):3719-28. PubMed ID: 19051929
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Steady-state concentration distribution of ampholytes in isoelectric focusing in a linear immobilized pH gradient.
    Stoyanov AV; Righetti PG
    Electrophoresis; 1998 Jul; 19(10):1596-600. PubMed ID: 9719532
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modeling of formation and prevention of a pure water zone in capillary isoelectric focusing with narrow pH range carrier ampholytes.
    Takácsi-Nagy A; Kilár F; Thormann W
    Electrophoresis; 2017 Mar; 38(5):677-688. PubMed ID: 27699824
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.