These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 18383054)

  • 1. Hexagonal-shaped tin glycolate particles: a preliminary study of their suitability as li-ion insertion electrodes.
    Ng SH; Chew SY; Dos Santos DI; Chen J; Wang JZ; Dou SX; Liu HK
    Chem Asian J; 2008 May; 3(5):854-61. PubMed ID: 18383054
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tin nanoparticles encapsulated in porous multichannel carbon microtubes: preparation by single-nozzle electrospinning and application as anode material for high-performance Li-based batteries.
    Yu Y; Gu L; Zhu C; van Aken PA; Maier J
    J Am Chem Soc; 2009 Nov; 131(44):15984-5. PubMed ID: 19886691
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries.
    Poizot P; Laruelle S; Grugeon S; Dupont L; Tarascon JM
    Nature; 2000 Sep; 407(6803):496-9. PubMed ID: 11028997
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A feasibility study on the use of Li(4)V(3)O(8) as a high capacity cathode material for lithium-ion batteries.
    Ng SH; Tran N; Bramnik KG; Hibst H; Novák P
    Chemistry; 2008; 14(35):11141-8. PubMed ID: 18979463
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synthesis of tin-encapsulated spherical hollow carbon for anode material in lithium secondary batteries.
    Lee KT; Jung YS; Oh SM
    J Am Chem Soc; 2003 May; 125(19):5652-3. PubMed ID: 12733902
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The use of tin-decorated mesoporous carbon as an anode material for rechargeable lithium batteries.
    Grigoriants I; Sominski L; Li H; Ifargan I; Aurbach D; Gedanken A
    Chem Commun (Camb); 2005 Feb; (7):921-3. PubMed ID: 15700082
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Porous Co3O4 nanosheets with extraordinarily high discharge capacity for lithium batteries.
    Zhan F; Geng B; Guo Y
    Chemistry; 2009 Jun; 15(25):6169-74. PubMed ID: 19437475
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A facile titanium glycolate precursor route to mesoporous Au/Li4Ti5O12 spheres for high-rate lithium-ion batteries.
    Li CC; Li QH; Chen LB; Wang TH
    ACS Appl Mater Interfaces; 2012 Mar; 4(3):1233-8. PubMed ID: 22313873
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Size controlled synthesis of Li2MnSiO4 nanoparticles: effect of calcination temperature and carbon content for high performance lithium batteries.
    Aravindan V; Ravi S; Kim WS; Lee SY; Lee YS
    J Colloid Interface Sci; 2011 Mar; 355(2):472-7. PubMed ID: 21251665
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A hierarchical tin/carbon composite as an anode for lithium-ion batteries with a long cycle life.
    Huang X; Cui S; Chang J; Hallac PB; Fell CR; Luo Y; Metz B; Jiang J; Hurley PT; Chen J
    Angew Chem Int Ed Engl; 2015 Jan; 54(5):1490-3. PubMed ID: 25504807
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hydrothermal synthesis of Zn2SnO4 as anode materials for Li-ion battery.
    Rong A; Gao XP; Li GR; Yan TY; Zhu HY; Qu JQ; Song DY
    J Phys Chem B; 2006 Aug; 110(30):14754-60. PubMed ID: 16869583
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrochemical Properties of Micron-Sized SnO Anode Using a Glyme-Based Electrolyte for Sodium-Ion Battery.
    Kim H; Lee SW; Lee KY; Park JW; Ryu HS; Cho KK; Cho GB; Kim KW; Ahn JH; Ahn HJ
    J Nanosci Nanotechnol; 2018 Sep; 18(9):6422-6426. PubMed ID: 29677807
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Full structural and electrochemical characterization of Li2Ti6O13 as anode for Li-ion batteries.
    Pérez-Flores JC; Baehtz C; Hoelzel M; Kuhn A; García-Alvarado F
    Phys Chem Chem Phys; 2012 Feb; 14(8):2892-9. PubMed ID: 22258437
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Metal hydrides for lithium-ion batteries.
    Oumellal Y; Rougier A; Nazri GA; Tarascon JM; Aymard L
    Nat Mater; 2008 Nov; 7(11):916-21. PubMed ID: 18849978
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Deformations in Si-Li anodes upon electrochemical alloying in nano-confined space.
    Hertzberg B; Alexeev A; Yushin G
    J Am Chem Soc; 2010 Jun; 132(25):8548-9. PubMed ID: 20527882
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Self-supported SnO2 nanowire electrodes for high-power lithium-ion batteries.
    Ko YD; Kang JG; Park JG; Lee S; Kim DW
    Nanotechnology; 2009 Nov; 20(45):455701. PubMed ID: 19822930
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Unfolding tin-cobalt interactions in oxide-based composite electrodes for Li-ion batteries by Mössbauer spectroscopy.
    Alcántara R; Ortiz GF; Tirado JL
    Chemphyschem; 2007 Jan; 8(1):80-6. PubMed ID: 17111454
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Flame spray-pyrolyzed vanadium oxide nanoparticles for lithium battery cathodes.
    Ng SH; Patey TJ; Büchel R; Krumeich F; Wang JZ; Liu HK; Pratsinis SE; Novák P
    Phys Chem Chem Phys; 2009 May; 11(19):3748-55. PubMed ID: 19421487
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sn-Cu nanocomposite anodes for rechargeable sodium-ion batteries.
    Lin YM; Abel PR; Gupta A; Goodenough JB; Heller A; Mullins CB
    ACS Appl Mater Interfaces; 2013 Sep; 5(17):8273-7. PubMed ID: 23957266
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nanocrystalline CoSn2-carbon composite electrode prepared by using sonochemistry.
    Nacimiento F; Alcántara R; Nwokeke UG; González JR; Tirado JL
    Ultrason Sonochem; 2012 Mar; 19(2):352-7. PubMed ID: 21784688
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.