BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

373 related articles for article (PubMed ID: 18383453)

  • 1. Skeletal tissue engineering using silk biomaterials.
    MacIntosh AC; Kearns VR; Crawford A; Hatton PV
    J Tissue Eng Regen Med; 2008; 2(2-3):71-80. PubMed ID: 18383453
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modulation of cell growth on exposure to silkworm and spider silk fibers.
    Hakimi O; Gheysens T; Vollrath F; Grahn MF; Knight DP; Vadgama P
    J Biomed Mater Res A; 2010 Mar; 92(4):1366-72. PubMed ID: 19353564
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Recent progress on silk fibroin as tissue engineering biomaterials].
    Wang H; Li M
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2008 Feb; 22(2):192-5. PubMed ID: 18365617
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Recombinant spider silk proteins for applications in biomaterials.
    Spiess K; Lammel A; Scheibel T
    Macromol Biosci; 2010 Sep; 10(9):998-1007. PubMed ID: 20602494
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Silk protein fiber biomaterials and tissue engineering].
    Huang JK; Li M
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2004 Mar; 18(2):127-30. PubMed ID: 15065413
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stem cell-based tissue engineering with silk biomaterials.
    Wang Y; Kim HJ; Vunjak-Novakovic G; Kaplan DL
    Biomaterials; 2006 Dec; 27(36):6064-82. PubMed ID: 16890988
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microstructures and mechanical properties of silks of silkworm and honeybee.
    Zhang K; Si FW; Duan HL; Wang J
    Acta Biomater; 2010 Jun; 6(6):2165-71. PubMed ID: 20026439
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Progress of silk fibroin in the cell scaffold of tissue engineering].
    Tian L; Min S
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2006 Dec; 23(6):1375-8. PubMed ID: 17228748
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bioengineered silk proteins to control cell and tissue functions.
    Preda RC; Leisk G; Omenetto F; Kaplan DL
    Methods Mol Biol; 2013; 996():19-41. PubMed ID: 23504416
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spider (Linothele megatheloides) and silkworm (Bombyx mori) silks: Comparative physical and biological evaluation.
    Yang Y; Greco G; Maniglio D; Mazzolai B; Migliaresi C; Pugno N; Motta A
    Mater Sci Eng C Mater Biol Appl; 2020 Feb; 107():110197. PubMed ID: 31761195
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Analyis of structure/property relationships in silkworm (Bombyx mori) and spider dragline (Nephila edulis) silks using Raman spectroscopy.
    Sirichaisit J; Brookes VL; Young RJ; Vollrath F
    Biomacromolecules; 2003; 4(2):387-94. PubMed ID: 12625736
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Non-bioengineered silk fibroin protein 3D scaffolds for potential biotechnological and tissue engineering applications.
    Mandal BB; Kundu SC
    Macromol Biosci; 2008 Sep; 8(9):807-18. PubMed ID: 18702171
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Silk sericin: A versatile material for tissue engineering and drug delivery.
    Lamboni L; Gauthier M; Yang G; Wang Q
    Biotechnol Adv; 2015 Dec; 33(8):1855-67. PubMed ID: 26523781
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Elasticity of spider silks.
    Liu Y; Shao Z; Vollrath F
    Biomacromolecules; 2008 Jul; 9(7):1782-6. PubMed ID: 18529075
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Silk fibroin film from non-mulberry tropical tasar silkworms: A novel substrate for in vitro fibroblast culture.
    Acharya C; Ghosh SK; Kundu SC
    Acta Biomater; 2009 Jan; 5(1):429-37. PubMed ID: 18676188
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Silk-based biomaterials.
    Altman GH; Diaz F; Jakuba C; Calabro T; Horan RL; Chen J; Lu H; Richmond J; Kaplan DL
    Biomaterials; 2003 Feb; 24(3):401-16. PubMed ID: 12423595
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Novel silk sericin/gelatin 3-D scaffolds and 2-D films: fabrication and characterization for potential tissue engineering applications.
    Mandal BB; Priya AS; Kundu SC
    Acta Biomater; 2009 Oct; 5(8):3007-20. PubMed ID: 19398392
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Behaviour of human mesenchymal stem cells on a polyelectrolyte-modified HEMA hydrogel for silk-based ligament tissue engineering.
    Bosetti M; Boccafoschi F; Calarco A; Leigheb M; Gatti S; Piffanelli V; Peluso G; Cannas M
    J Biomater Sci Polym Ed; 2008; 19(9):1111-23. PubMed ID: 18727855
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparing the rheology of native spider and silkworm spinning dope.
    Holland C; Terry AE; Porter D; Vollrath F
    Nat Mater; 2006 Nov; 5(11):870-4. PubMed ID: 17057700
    [TBL] [Abstract][Full Text] [Related]  

  • 20. State of the art and future directions of scaffold-based bone engineering from a biomaterials perspective.
    Hutmacher DW; Schantz JT; Lam CX; Tan KC; Lim TC
    J Tissue Eng Regen Med; 2007; 1(4):245-60. PubMed ID: 18038415
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.