These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 18383571)

  • 1. New insights into polylactide biodegradation from molecular ecological techniques.
    Sangwan P; Wu DY
    Macromol Biosci; 2008 Apr; 8(4):304-15. PubMed ID: 18383571
    [TBL] [Abstract][Full Text] [Related]  

  • 2. New insight into biodegradation of polylactide (PLA)/clay nanocomposites using molecular ecological techniques.
    Sangwan P; Way C; Wu DY
    Macromol Biosci; 2009 Jul; 9(7):677-86. PubMed ID: 19148900
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Progress on biodegradation of polylactic acid--a review].
    Li F; Wang S; Liu W; Chen G
    Wei Sheng Wu Xue Bao; 2008 Feb; 48(2):262-8. PubMed ID: 18438013
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bacterial polyesters: biosynthesis, biodegradable plastics and biotechnology.
    Lenz RW; Marchessault RH
    Biomacromolecules; 2005; 6(1):1-8. PubMed ID: 15638495
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biodegradation of microbial and synthetic polyesters by fungi.
    Kim DY; Rhee YH
    Appl Microbiol Biotechnol; 2003 May; 61(4):300-8. PubMed ID: 12743758
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microbial degradation of four biodegradable polymers in soil and compost demonstrating polycaprolactone as an ideal compostable plastic.
    Al Hosni AS; Pittman JK; Robson GD
    Waste Manag; 2019 Sep; 97():105-114. PubMed ID: 31447017
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Polyester-based (bio)degradable polymers as environmentally friendly materials for sustainable development.
    Rydz J; Sikorska W; Kyulavska M; Christova D
    Int J Mol Sci; 2014 Dec; 16(1):564-96. PubMed ID: 25551604
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biodegradable plastics from renewable sources.
    Flieger M; Kantorová M; Prell A; Rezanka T; Votruba J
    Folia Microbiol (Praha); 2003; 48(1):27-44. PubMed ID: 12744074
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Melt Viscoelastic Assessment of Poly(Lactic Acid) Composting: Influence of UV Ageing.
    Verney V; Ramoné A; Delor-Jestin F; Commereuc S; Koutny M; Perchet G; Troquet J
    Molecules; 2018 Oct; 23(10):. PubMed ID: 30340360
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biofilm formation on the surface of polylactide during its biodegradation in different environments.
    Walczak M; Swiontek Brzezinska M; Sionkowska A; Michalska M; Jankiewicz U; Deja-Sikora E
    Colloids Surf B Biointerfaces; 2015 Dec; 136():340-5. PubMed ID: 26433346
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biodegradable kinetics and behavior of bio-based polyblends under simulated aerobic composting conditions.
    Kalita NK; Bhasney SM; Kalamdhad A; Katiyar V
    J Environ Manage; 2020 May; 261():110211. PubMed ID: 32148281
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Forensic engineering of advanced polymeric materials. Part III - Biodegradation of thermoformed rigid PLA packaging under industrial composting conditions.
    Musioł M; Sikorska W; Adamus G; Janeczek H; Richert J; Malinowski R; Jiang G; Kowalczuk M
    Waste Manag; 2016 Jun; 52():69-76. PubMed ID: 27103398
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Use of molecular techniques in bioremediation.
    Płaza G; Ulfig K; Hazen TC; Brigmon RL
    Acta Microbiol Pol; 2001; 50(3-4):205-18. PubMed ID: 11930989
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Community dynamics of methanotrophic bacteria during composting of organic matter.
    Halet D; Boon N; Verstraete W
    J Biosci Bioeng; 2006 Apr; 101(4):297-302. PubMed ID: 16716936
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Successions of bacterial community in composting cow dung wastes with or without hyperthermophilic pre-treatment.
    Yamada T; Suzuki A; Ueda H; Ueda Y; Miyauchi K; Endo G
    Appl Microbiol Biotechnol; 2008 Dec; 81(4):771-81. PubMed ID: 18974985
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biodegradability and biodegradation rate of poly(caprolactone)-starch blend and poly(butylene succinate) biodegradable polymer under aerobic and anaerobic environment.
    Cho HS; Moon HS; Kim M; Nam K; Kim JY
    Waste Manag; 2011 Mar; 31(3):475-80. PubMed ID: 21144726
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biodegradable open cell foams of telechelic poly(epsilon-caprolactone) macroligand with ruthenium (II) chromophoric subunits via sub-critical CO2 processing.
    Nawaby AV; Farah AA; Liao X; Pietro WJ; Day M
    Biomacromolecules; 2005; 6(5):2458-61. PubMed ID: 16153080
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Emulsifying properties of biodegradable polylactide-grafted dextran copolymers.
    Raynaud J; Choquenet B; Marie E; Dellacherie E; Nouvel C; Six JL; Durand A
    Biomacromolecules; 2008 Mar; 9(3):1014-21. PubMed ID: 18271550
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microbial communities and greenhouse gas emissions associated with the biodegradation of specified risk material in compost.
    Xu S; Reuter T; Gilroyed BH; Tymensen L; Hao Y; Hao X; Belosevic M; Leonard JJ; McAllister TA
    Waste Manag; 2013 Jun; 33(6):1372-80. PubMed ID: 23490363
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synergy of two thermophiles enables decomposition of poly-epsilon-caprolactone under composting conditions.
    Nakasaki K; Matsuura H; Tanaka H; Sakai T
    FEMS Microbiol Ecol; 2006 Dec; 58(3):373-83. PubMed ID: 17117982
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.