These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 18384169)

  • 1. Fabrication of burst pressure competent vascular grafts via electrospinning: effects of microstructure.
    Drilling S; Gaumer J; Lannutti J
    J Biomed Mater Res A; 2009 Mar; 88(4):923-34. PubMed ID: 18384169
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The use of thermal treatments to enhance the mechanical properties of electrospun poly(epsilon-caprolactone) scaffolds.
    Lee SJ; Oh SH; Liu J; Soker S; Atala A; Yoo JJ
    Biomaterials; 2008 Apr; 29(10):1422-30. PubMed ID: 18096219
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrospinning-aligned and random polydioxanone-polycaprolactone-silk fibroin-blended scaffolds: geometry for a vascular matrix.
    McClure MJ; Sell SA; Ayres CE; Simpson DG; Bowlin GL
    Biomed Mater; 2009 Oct; 4(5):055010. PubMed ID: 19815970
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Suture-reinforced electrospun polydioxanone-elastin small-diameter tubes for use in vascular tissue engineering: a feasibility study.
    Smith MJ; McClure MJ; Sell SA; Barnes CP; Walpoth BH; Simpson DG; Bowlin GL
    Acta Biomater; 2008 Jan; 4(1):58-66. PubMed ID: 17897890
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Compliant electrospun silk fibroin tubes for small vessel bypass grafting.
    Marelli B; Alessandrino A; Farè S; Freddi G; Mantovani D; Tanzi MC
    Acta Biomater; 2010 Oct; 6(10):4019-26. PubMed ID: 20466080
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electrospun polydioxanone-elastin blends: potential for bioresorbable vascular grafts.
    Sell SA; McClure MJ; Barnes CP; Knapp DC; Walpoth BH; Simpson DG; Bowlin GL
    Biomed Mater; 2006 Jun; 1(2):72-80. PubMed ID: 18460759
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structure-function relationships and source-to-ground distance in electrospun polycaprolactone.
    Gaumer J; Prasad A; Lee D; Lannutti J
    Acta Biomater; 2009 Jun; 5(5):1552-61. PubMed ID: 19233754
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fabrication of drug-loaded electrospun aligned fibrous threads for suture applications.
    He CL; Huang ZM; Han XJ
    J Biomed Mater Res A; 2009 Apr; 89(1):80-95. PubMed ID: 18428982
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electrospinning of microbial polyester for cell culture.
    Kwon OH; Lee IS; Ko YG; Meng W; Jung KH; Kang IK; Ito Y
    Biomed Mater; 2007 Mar; 2(1):S52-8. PubMed ID: 18458420
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fabrication of cell penetration enhanced poly (l-lactic acid-co-ɛ-caprolactone)/silk vascular scaffolds utilizing air-impedance electrospinning.
    Yin A; Li J; Bowlin GL; Li D; Rodriguez IA; Wang J; Wu T; Ei-Hamshary HA; Al-Deyab SS; Mo X
    Colloids Surf B Biointerfaces; 2014 Aug; 120():47-54. PubMed ID: 24905678
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanical characterization of electrospun polycaprolactone (PCL): a potential scaffold for tissue engineering.
    Duling RR; Dupaix RB; Katsube N; Lannutti J
    J Biomech Eng; 2008 Feb; 130(1):011006. PubMed ID: 18298182
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Functionally graded electrospun scaffolds with tunable mechanical properties for vascular tissue regeneration.
    Thomas V; Zhang X; Catledge SA; Vohra YK
    Biomed Mater; 2007 Dec; 2(4):224-32. PubMed ID: 18458479
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electrospinning polydioxanone for biomedical applications.
    Boland ED; Coleman BD; Barnes CP; Simpson DG; Wnek GE; Bowlin GL
    Acta Biomater; 2005 Jan; 1(1):115-23. PubMed ID: 16701785
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effect of gradually graded shear stress on the morphological integrity of a huvec-seeded compliant small-diameter vascular graft.
    Inoguchi H; Tanaka T; Maehara Y; Matsuda T
    Biomaterials; 2007 Jan; 28(3):486-95. PubMed ID: 17034847
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrospun PCL in vitro: a microstructural basis for mechanical property changes.
    Johnson J; Niehaus A; Nichols S; Lee D; Koepsel J; Anderson D; Lannutti J
    J Biomater Sci Polym Ed; 2009; 20(4):467-81. PubMed ID: 19228448
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Coaxial electrospinning multicomponent functional controlled-release vascular graft: Optimization of graft properties.
    Yin A; Luo R; Li J; Mo X; Wang Y; Zhang X
    Colloids Surf B Biointerfaces; 2017 Apr; 152():432-439. PubMed ID: 28178611
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Gradient fiber electrospinning of layered scaffolds using controlled transitions in fiber diameter.
    Grey CP; Newton ST; Bowlin GL; Haas TW; Simpson DG
    Biomaterials; 2013 Jul; 34(21):4993-5006. PubMed ID: 23602367
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fabrication of a biocomposite reinforced with hydrophilic eggshell proteins.
    Kim G; Min T; Park SA; Kim WD; Koh YH
    Biomed Mater; 2007 Dec; 2(4):250-6. PubMed ID: 18458482
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Degradation behaviors of electrospun resorbable polyester nanofibers.
    Dong Y; Liao S; Ngiam M; Chan CK; Ramakrishna S
    Tissue Eng Part B Rev; 2009 Sep; 15(3):333-51. PubMed ID: 19459780
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modification of polyethylene terephthalate (Dacron) via denier reduction: effects on material tensile strength, weight, and protein binding capabilities.
    Phaneuf MD; Quist WC; Bide MJ; LoGerfo FW
    J Appl Biomater; 1995; 6(4):289-99. PubMed ID: 8589514
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.