These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
222 related articles for article (PubMed ID: 18384278)
1. Stimulation of mitochondrial proton conductance by hydroxynonenal requires a high membrane potential. Parker N; Vidal-Puig A; Brand MD Biosci Rep; 2008 Apr; 28(2):83-8. PubMed ID: 18384278 [TBL] [Abstract][Full Text] [Related]
2. Uncoupling protein-3 lowers reactive oxygen species production in isolated mitochondria. Toime LJ; Brand MD Free Radic Biol Med; 2010 Aug; 49(4):606-11. PubMed ID: 20493945 [TBL] [Abstract][Full Text] [Related]
3. GDP and carboxyatractylate inhibit 4-hydroxynonenal-activated proton conductance to differing degrees in mitochondria from skeletal muscle and heart. Aguirre E; Cadenas S Biochim Biophys Acta; 2010 Oct; 1797(10):1716-26. PubMed ID: 20599679 [TBL] [Abstract][Full Text] [Related]
4. Mitochondrial proton conductance in skeletal muscle of a cold-exposed marsupial, Antechinus flavipes, is unlikely to be involved in adaptive nonshivering thermogenesis but displays increased sensitivity toward carbon-centered radicals. Jastroch M; Withers KW; Stoehr S; Klingenspor M Physiol Biochem Zool; 2009; 82(5):447-54. PubMed ID: 19614545 [TBL] [Abstract][Full Text] [Related]
10. Absence of uncoupling protein-3 leads to greater activation of an adenine nucleotide translocase-mediated proton conductance in skeletal muscle mitochondria from calorie restricted mice. Bevilacqua L; Seifert EL; Estey C; Gerrits MF; Harper ME Biochim Biophys Acta; 2010 Aug; 1797(8):1389-97. PubMed ID: 20206124 [TBL] [Abstract][Full Text] [Related]
11. Cold tolerance of UCP1-ablated mice: a skeletal muscle mitochondria switch toward lipid oxidation with marked UCP3 up-regulation not associated with increased basal, fatty acid- or ROS-induced uncoupling or enhanced GDP effects. Shabalina IG; Hoeks J; Kramarova TV; Schrauwen P; Cannon B; Nedergaard J Biochim Biophys Acta; 2010; 1797(6-7):968-80. PubMed ID: 20227385 [TBL] [Abstract][Full Text] [Related]
12. Hydroxynonenal, a lipid peroxidation end product, stimulates uncoupling protein activity in Acanthamoeba castellanii mitochondria; the sensitivity of the inducible activity to purine nucleotides depends on the membranous ubiquinone redox state. Woyda-Ploszczyca AM; Jarmuszkiewicz W J Bioenerg Biomembr; 2012 Oct; 44(5):525-38. PubMed ID: 22798183 [TBL] [Abstract][Full Text] [Related]
13. UCP1 and defense against oxidative stress. 4-Hydroxy-2-nonenal effects on brown fat mitochondria are uncoupling protein 1-independent. Shabalina IG; Petrovic N; Kramarova TV; Hoeks J; Cannon B; Nedergaard J J Biol Chem; 2006 May; 281(20):13882-93. PubMed ID: 16543238 [TBL] [Abstract][Full Text] [Related]
14. Hydroxynonenal-stimulated activity of the uncoupling protein in Acanthamoeba castellanii mitochondria under phosphorylating conditions. Woyda-Ploszczyca A; Jarmuszkiewicz W Biol Chem; 2013 May; 394(5):649-58. PubMed ID: 23362201 [TBL] [Abstract][Full Text] [Related]
15. Fatty acids are key in 4-hydroxy-2-nonenal-mediated activation of uncoupling proteins 1 and 2. Malingriaux EA; Rupprecht A; Gille L; Jovanovic O; Jezek P; Jaburek M; Pohl EE PLoS One; 2013; 8(10):e77786. PubMed ID: 24204965 [TBL] [Abstract][Full Text] [Related]
16. Uncoupling proteins and the control of mitochondrial reactive oxygen species production. Mailloux RJ; Harper ME Free Radic Biol Med; 2011 Sep; 51(6):1106-15. PubMed ID: 21762777 [TBL] [Abstract][Full Text] [Related]
17. Hydroxynonenal and uncoupling proteins: a model for protection against oxidative damage. Echtay KS; Pakay JL; Esteves TC; Brand MD Biofactors; 2005; 24(1-4):119-30. PubMed ID: 16403971 [TBL] [Abstract][Full Text] [Related]
18. UCP2 and ANT differently modulate proton-leak in brain mitochondria of long-term hyperglycemic and recurrent hypoglycemic rats. Cardoso S; Santos MS; Moreno A; Moreira PI J Bioenerg Biomembr; 2013 Aug; 45(4):397-407. PubMed ID: 23504111 [TBL] [Abstract][Full Text] [Related]