These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
451 related articles for article (PubMed ID: 18384525)
1. Optimization of a new heteropolysaccharide production by a native isolate of Leuconostoc sp. CFR-2181. Vijayendra SV; Babu RS Lett Appl Microbiol; 2008 Jun; 46(6):643-8. PubMed ID: 18384525 [TBL] [Abstract][Full Text] [Related]
2. Production of exopolysaccharides by Agrobacterium sp. CFR-24 using coconut water - a byproduct of food industry. Shivakumar S; Vijayendra SV Lett Appl Microbiol; 2006 May; 42(5):477-82. PubMed ID: 16620206 [TBL] [Abstract][Full Text] [Related]
3. Physico-chemical characterization of a new heteropolysaccharide produced by a native isolate of heterofermentative Lactobacillus sp. CFR-2182. Vijayendra SV; Palanivel G; Mahadevamma S; Tharanathan RN Arch Microbiol; 2009 Apr; 191(4):303-10. PubMed ID: 19104774 [TBL] [Abstract][Full Text] [Related]
4. Fermentation conditions affecting the bacterial growth and exopolysaccharide production by Streptococcus thermophilus ST 111 in milk-based medium. Vaningelgem F; Zamfir M; Adriany T; De Vuyst L J Appl Microbiol; 2004; 97(6):1257-73. PubMed ID: 15546417 [TBL] [Abstract][Full Text] [Related]
5. Enhanced production of exopolysaccharides by fed-batch culture of Ganoderma resinaceum DG-6556. Kim HM; Paik SY; Ra KS; Koo KB; Yun JW; Choi JW J Microbiol; 2006 Apr; 44(2):233-42. PubMed ID: 16728961 [TBL] [Abstract][Full Text] [Related]
6. Growth and exopolysaccharide production during free and immobilized cell chemostat culture of Lactobacillus rhamnosus RW-9595M. Bergmaier D; Champagne CP; Lacroix C J Appl Microbiol; 2005; 98(2):272-84. PubMed ID: 15659181 [TBL] [Abstract][Full Text] [Related]
7. Optimization of trehalose production by a novel strain Brevibacterium sp. SY361. Wang L; Huang R; Gu G; Fang H J Basic Microbiol; 2008 Oct; 48(5):410-5. PubMed ID: 18759225 [TBL] [Abstract][Full Text] [Related]
8. Optimization of submerged culture requirements for the production of mycelial growth and exopolysaccharide by Cordyceps jiangxiensis JXPJ 0109. Xiao JH; Chen DX; Liu JW; Liu ZL; Wan WH; Fang N; Xiao Y; Qi Y; Liang ZQ J Appl Microbiol; 2004; 96(5):1105-16. PubMed ID: 15078528 [TBL] [Abstract][Full Text] [Related]
9. Growth and exopolysaccharide (EPS) production by Oenococcus oeni I4 and structural characterization of their EPSs. Ibarburu I; Soria-Díaz ME; Rodríguez-Carvajal MA; Velasco SE; Tejero-Mateo P; Gil-Serrano AM; Irastorza A; Dueñas MT J Appl Microbiol; 2007 Aug; 103(2):477-86. PubMed ID: 17650209 [TBL] [Abstract][Full Text] [Related]
10. Effects of pH, temperature, supplementation with whey protein concentrate, and adjunct cultures on the production of exopolysaccharides by Streptococcus thermophilus 1275. Zisu B; Shah NP J Dairy Sci; 2003 Nov; 86(11):3405-15. PubMed ID: 14672169 [TBL] [Abstract][Full Text] [Related]
11. Evaluation of exopolysaccharide production by Leuconostoc mesenteroides strains isolated from wine. Montersino S; Prieto A; Muñoz R; de Las Rivas B J Food Sci; 2008 May; 73(4):M196-9. PubMed ID: 18460137 [TBL] [Abstract][Full Text] [Related]
12. An economic approach for L-(+) lactic acid fermentation by Lactobacillus amylophilus GV6 using inexpensive carbon and nitrogen sources. Altaf M; Venkateshwar M; Srijana M; Reddy G J Appl Microbiol; 2007 Aug; 103(2):372-80. PubMed ID: 17650197 [TBL] [Abstract][Full Text] [Related]
13. Environmental factors influencing growth of and exopolysaccharide formation by Pediococcus parvulus 2.6. Velasco S; Arsköld E; Paese M; Grage H; Irastorza A; Rådström P; van Niel EW Int J Food Microbiol; 2006 Oct; 111(3):252-8. PubMed ID: 16854485 [TBL] [Abstract][Full Text] [Related]
14. Fermentation characteristics of exopolysaccharide-producing lactic acid bacteria from sourdough and assessment of the isolates for industrial potential. Jung SW; Kim WJ; Lee KG; Kim CW; Noh WS J Microbiol Biotechnol; 2008 Jul; 18(7):1266-73. PubMed ID: 18667855 [TBL] [Abstract][Full Text] [Related]
15. Optimization of bio-hydrogen production from biodiesel wastes by Klebsiella pneumoniae. Liu F; Fang B Biotechnol J; 2007 Mar; 2(3):374-80. PubMed ID: 17260330 [TBL] [Abstract][Full Text] [Related]
16. Biosynthesis of proteases by Rhizopus oligosporus IHS13 in low-cost medium by solid-state fermentation. Haq IU; Mukhtar H J Basic Microbiol; 2004; 44(4):280-7. PubMed ID: 15266600 [TBL] [Abstract][Full Text] [Related]
17. A cost-effective cane molasses medium for enhanced cell-bound phytase production by Pichia anomala. Vohra A; Satyanarayana T J Appl Microbiol; 2004; 97(3):471-6. PubMed ID: 15281926 [TBL] [Abstract][Full Text] [Related]
18. Cultivating conditions influence exopolysaccharide production by the edible Basidiomycete Antrodia cinnamomea in submerged culture. Lin ES; Sung SC Int J Food Microbiol; 2006 Apr; 108(2):182-7. PubMed ID: 16434117 [TBL] [Abstract][Full Text] [Related]
19. Statistical optimization of exopolysaccharide production by Farinazzo FS; Fernandes MTC; Mauro CSI; Garcia S Prep Biochem Biotechnol; 2022; 52(3):245-252. PubMed ID: 34092177 [No Abstract] [Full Text] [Related]
20. A cost effective fermentative production of succinic acid from cane molasses and corn steep liquor by Escherichia coli. Agarwal L; Isar J; Meghwanshi GK; Saxena RK J Appl Microbiol; 2006 Jun; 100(6):1348-54. PubMed ID: 16696683 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]