BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

310 related articles for article (PubMed ID: 18384754)

  • 1. Sleep homeostasis: a role for adenosine in humans?
    Landolt HP
    Biochem Pharmacol; 2008 Jun; 75(11):2070-9. PubMed ID: 18384754
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Caffeine attenuates waking and sleep electroencephalographic markers of sleep homeostasis in humans.
    Landolt HP; Rétey JV; Tönz K; Gottselig JM; Khatami R; Buckelmüller I; Achermann P
    Neuropsychopharmacology; 2004 Oct; 29(10):1933-9. PubMed ID: 15257305
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Adenosine and homeostatic control of sleep. Actions in target structures of the sleep-wake circuits].
    Carús-Cadavieco M; de Andrés I
    Rev Neurol; 2012 Oct; 55(7):413-20. PubMed ID: 23011860
    [TBL] [Abstract][Full Text] [Related]  

  • 4. From slow waves to sleep homeostasis: new perspectives.
    Borbély AA
    Arch Ital Biol; 2001 Feb; 139(1-2):53-61. PubMed ID: 11256187
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Adenosine in sleep regulation].
    Adrien J
    Rev Neurol (Paris); 2001 Nov; 157(11 Pt 2):S7-11. PubMed ID: 11924043
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Theta activity in the waking EEG is a marker of sleep propensity in the rat.
    Vyazovskiy VV; Tobler I
    Brain Res; 2005 Jul; 1050(1-2):64-71. PubMed ID: 15975563
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sleep homeostasis in the rat in the light and dark period.
    Vyazovskiy VV; Achermann P; Tobler I
    Brain Res Bull; 2007 Sep; 74(1-3):37-44. PubMed ID: 17683787
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Increased EEG spectral power density during sleep following short-term sleep deprivation in pigeons (Columba livia): evidence for avian sleep homeostasis.
    Martinez-Gonzalez D; Lesku JA; Rattenborg NC
    J Sleep Res; 2008 Jun; 17(2):140-53. PubMed ID: 18321247
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of caffeine on sleep and cognition.
    Snel J; Lorist MM
    Prog Brain Res; 2011; 190():105-17. PubMed ID: 21531247
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Adenosine and the homeostatic control of sleep: effects of A1 receptor blockade in the perifornical lateral hypothalamus on sleep-wakefulness.
    Thakkar MM; Engemann SC; Walsh KM; Sahota PK
    Neuroscience; 2008 Jun; 153(4):875-80. PubMed ID: 18440150
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Polymorphisms of ADORA2A modulate psychomotor vigilance and the effects of caffeine on neurobehavioural performance and sleep EEG after sleep deprivation.
    Bodenmann S; Hohoff C; Freitag C; Deckert J; Rétey JV; Bachmann V; Landolt HP
    Br J Pharmacol; 2012 Mar; 165(6):1904-1913. PubMed ID: 21950736
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The role of the basal forebrain adenosine receptors in sleep homeostasis.
    Gass N; Porkka-Heiskanen T; Kalinchuk AV
    Neuroreport; 2009 Jul; 20(11):1013-8. PubMed ID: 19491711
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Adenosinergic mechanisms contribute to individual differences in sleep deprivation-induced changes in neurobehavioral function and brain rhythmic activity.
    Rétey JV; Adam M; Gottselig JM; Khatami R; Dürr R; Achermann P; Landolt HP
    J Neurosci; 2006 Oct; 26(41):10472-9. PubMed ID: 17035531
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Methylxanthines and sleep.
    Porkka-Heiskanen T
    Handb Exp Pharmacol; 2011; (200):331-48. PubMed ID: 20859802
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The adenosine kinase inhibitor ABT-702 augments EEG slow waves in rats.
    Radek RJ; Decker MW; Jarvis MF
    Brain Res; 2004 Nov; 1026(1):74-83. PubMed ID: 15476699
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Adenosine, energy metabolism and sleep homeostasis.
    Porkka-Heiskanen T; Kalinchuk AV
    Sleep Med Rev; 2011 Apr; 15(2):123-35. PubMed ID: 20970361
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Age-related changes in the circadian and homeostatic regulation of human sleep.
    Cajochen C; Münch M; Knoblauch V; Blatter K; Wirz-Justice A
    Chronobiol Int; 2006; 23(1-2):461-74. PubMed ID: 16687319
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Timing and consolidation of human sleep, wakefulness, and performance by a symphony of oscillators.
    Dijk DJ; von Schantz M
    J Biol Rhythms; 2005 Aug; 20(4):279-90. PubMed ID: 16077148
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Slow wave activity during sleep: functional and therapeutic implications.
    Greene RW; Frank MG
    Neuroscientist; 2010 Dec; 16(6):618-33. PubMed ID: 20921564
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The disappearing slow wave activity of hibernators.
    Larkin JE; Heller CH
    Sleep Res Online; 1998; 1(2):96-101. PubMed ID: 11382864
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.