These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
121 related articles for article (PubMed ID: 18384817)
1. How much non-coding DNA do eukaryotes require? Ahnert SE; Fink TM; Zinovyev A J Theor Biol; 2008 Jun; 252(4):587-92. PubMed ID: 18384817 [TBL] [Abstract][Full Text] [Related]
2. Features of coding and noncoding sequences based on 3-tuple distributions. Fu Q; Qian MP; Chen LB; Zhu YX Yi Chuan Xue Bao; 2005 Oct; 32(10):1018-26. PubMed ID: 16252696 [TBL] [Abstract][Full Text] [Related]
3. The relationship between non-protein-coding DNA and eukaryotic complexity. Taft RJ; Pheasant M; Mattick JS Bioessays; 2007 Mar; 29(3):288-99. PubMed ID: 17295292 [TBL] [Abstract][Full Text] [Related]
4. Identification and simulation of shifted periodicities common to protein coding genes of eukaryotes, prokaryotes and viruses. Arquès DG; Lapayre JC; Michel CJ J Theor Biol; 1995 Feb; 172(3):279-91. PubMed ID: 7715198 [TBL] [Abstract][Full Text] [Related]
5. DNA topology and genome organization in higher eukaryotes: a model. Gaillard C; Strauss F J Theor Biol; 2006 Dec; 243(4):604-7. PubMed ID: 16930627 [No Abstract] [Full Text] [Related]
6. Life: in search of the simplest cell. Szathmáry E Nature; 2005 Feb; 433(7025):469-70. PubMed ID: 15690023 [No Abstract] [Full Text] [Related]
7. [Chromatin diminution is a key process explaining the eukaryotic genome size paradox and some mechanisms of genetic isolation]. Akif'ev AP; Grishanin AK; Degtiarev SV Genetika; 2002 May; 38(5):595-606. PubMed ID: 12068542 [TBL] [Abstract][Full Text] [Related]
8. [Highest level of division in the organism classification. 1. Prokaryotes and eukaryotes]. Shatalkin AI Zh Obshch Biol; 2004; 65(1):19-38. PubMed ID: 15032063 [TBL] [Abstract][Full Text] [Related]
9. Genomic analyses and the origin of the eukaryotes. Rivera MC Chem Biodivers; 2007 Nov; 4(11):2631-8. PubMed ID: 18027376 [TBL] [Abstract][Full Text] [Related]
10. An RNA-centered view of eukaryotic cells. Tannenbaum E Biosystems; 2006 Jun; 84(3):217-24. PubMed ID: 16406252 [TBL] [Abstract][Full Text] [Related]
11. Nucleosomes: a solution to a crowded intracellular environment? Minsky A; Ghirlando R; Reich Z J Theor Biol; 1997 Oct; 188(3):379-85. PubMed ID: 9344743 [TBL] [Abstract][Full Text] [Related]
13. Fundamentally different logic of gene regulation in eukaryotes and prokaryotes. Struhl K Cell; 1999 Jul; 98(1):1-4. PubMed ID: 10412974 [No Abstract] [Full Text] [Related]
14. Genome evolution in prokaryotes and eukaryotes. Int Rev Cytol; 1985; 93():1-362. PubMed ID: 4008190 [No Abstract] [Full Text] [Related]
15. Frameshift signals in genes associated with the circular code. Ahmed A; Frey G; Michel CJ In Silico Biol; 2007; 7(2):155-68. PubMed ID: 17688441 [TBL] [Abstract][Full Text] [Related]
16. Origins. On the origin of eukaryotes. Zimmer C Science; 2009 Aug; 325(5941):666-8. PubMed ID: 19661396 [No Abstract] [Full Text] [Related]
17. Origination of the split structure of spliceosomal genes from random genetic sequences. Regulapati R; Bhasi A; Singh CK; Senapathy P PLoS One; 2008; 3(10):e3456. PubMed ID: 18941625 [TBL] [Abstract][Full Text] [Related]
18. Non-coding DNA can regulate gene transcription by its base pair's distribution. Sandler U; Wyler A J Theor Biol; 1998 Jul; 193(1):85-90. PubMed ID: 9689945 [TBL] [Abstract][Full Text] [Related]
19. [Informational hypothesis of aging: how does the germ line "avoid" the aging?]. Karnaukhov AV; Karnaukhova EV Biofizika; 2009; 54(4):726-32. PubMed ID: 19795796 [TBL] [Abstract][Full Text] [Related]
20. Exploring the behavior of small eukaryotic gene networks. Bruggeman FJ; Oancea I; van Driel R J Theor Biol; 2008 Jun; 252(3):482-7. PubMed ID: 18433776 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]