These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
173 related articles for article (PubMed ID: 18384837)
1. A comparison of DEMETRA individual QSARs with an index for evaluation of uncertainty. Porcelli C; Roncaglioni A; Chana A; Benfenati E Chemosphere; 2008 May; 71(10):1845-52. PubMed ID: 18384837 [TBL] [Abstract][Full Text] [Related]
2. Top-priority fragment QSAR approach in predicting pesticide aquatic toxicity. Casalegno M; Sello G; Benfenati E Chem Res Toxicol; 2006 Nov; 19(11):1533-9. PubMed ID: 17112242 [TBL] [Abstract][Full Text] [Related]
3. Critical assessment of QSAR models of environmental toxicity against Tetrahymena pyriformis: focusing on applicability domain and overfitting by variable selection. Tetko IV; Sushko I; Pandey AK; Zhu H; Tropsha A; Papa E; Oberg T; Todeschini R; Fourches D; Varnek A J Chem Inf Model; 2008 Sep; 48(9):1733-46. PubMed ID: 18729318 [TBL] [Abstract][Full Text] [Related]
4. Regulatory perspectives in the use and validation of QSAR. A case study: DEMETRA model for Daphnia toxicity. Porcelli C; Boriani E; Roncaglioni A; Chana A; Benfenati E Environ Sci Technol; 2008 Jan; 42(2):491-6. PubMed ID: 18284152 [TBL] [Abstract][Full Text] [Related]
5. The importance of outlier detection and training set selection for reliable environmental QSAR predictions. Furusjö E; Svenson A; Rahmberg M; Andersson M Chemosphere; 2006 Mar; 63(1):99-108. PubMed ID: 16153688 [TBL] [Abstract][Full Text] [Related]
6. Quantitative structure-activity relationship modeling of the toxicity of organothiophosphate pesticides to Daphnia magna and Cyprinus carpio. Zvinavashe E; Du T; Griff T; van den Berg HH; Soffers AE; Vervoort J; Murk AJ; Rietjens IM Chemosphere; 2009 Jun; 75(11):1531-8. PubMed ID: 19376559 [TBL] [Abstract][Full Text] [Related]
7. The specificity of the QSAR models for regulatory purposes: the example of the DEMETRA project. Benfenati E SAR QSAR Environ Res; 2007; 18(3-4):209-20. PubMed ID: 17514566 [TBL] [Abstract][Full Text] [Related]
8. Ecotoxicity quantitative structure-activity relationships for alcohol ethoxylate mixtures based on substance-specific toxicity predictions. Boeije GM; Cano ML; Marshall SJ; Belanger SE; Van Compernolle R; Dorn PB; Gümbel H; Toy R; Wind T Ecotoxicol Environ Saf; 2006 May; 64(1):75-84. PubMed ID: 16256196 [TBL] [Abstract][Full Text] [Related]
9. Quantitative structure-activity relationships for the toxicity of organophosphorus and carbamate pesticides to the Rainbow trout Onchorhyncus mykiss. Bermúdez-Saldaña JM; Cronin MT Pest Manag Sci; 2006 Sep; 62(9):819-31. PubMed ID: 16763959 [TBL] [Abstract][Full Text] [Related]
10. Internal and external validation of the long-term QSARs for neutral organics to fish from ECOSAR™. de Haas EM; Eikelboom T; Bouwman T SAR QSAR Environ Res; 2011; 22(5-6):545-59. PubMed ID: 21732893 [TBL] [Abstract][Full Text] [Related]
11. Experiences with the application of QSAR in the routine of the notification procedure. Lange AW; Vormann K SAR QSAR Environ Res; 1995; 3(3):171-7. PubMed ID: 8564853 [TBL] [Abstract][Full Text] [Related]
12. A QSAR for baseline toxicity: validation, domain of application, and prediction. Oberg T Chem Res Toxicol; 2004 Dec; 17(12):1630-7. PubMed ID: 15606139 [TBL] [Abstract][Full Text] [Related]
13. Correlation weighting of valence shells in QSAR analysis of toxicity. Toropov AA; Benfenati E Bioorg Med Chem; 2006 Jun; 14(11):3923-8. PubMed ID: 16460943 [TBL] [Abstract][Full Text] [Related]
14. Unified QSAR approach to antimicrobials. Part 3: first multi-tasking QSAR model for input-coded prediction, structural back-projection, and complex networks clustering of antiprotozoal compounds. Prado-Prado FJ; González-Díaz H; de la Vega OM; Ubeira FM; Chou KC Bioorg Med Chem; 2008 Jun; 16(11):5871-80. PubMed ID: 18485714 [TBL] [Abstract][Full Text] [Related]
15. Comparative study of four QSAR models of aromatic compounds to aquatic organisms. Yu RL; Hu GR; Zhao YH J Environ Sci (China); 2002 Oct; 14(4):552-7. PubMed ID: 12491732 [TBL] [Abstract][Full Text] [Related]
16. QSAR-based toxicity classification and prediction for single and mixed aromatic compounds. Wei DB; Zhai LH; Hu HY SAR QSAR Environ Res; 2004 Jun; 15(3):207-16. PubMed ID: 15293547 [TBL] [Abstract][Full Text] [Related]
17. Ecotoxicological quantitative structure-activity relationships for pharmaceuticals. Sanderson H; Thomsen M Bull Environ Contam Toxicol; 2007 Sep; 79(3):331-5. PubMed ID: 17701090 [TBL] [Abstract][Full Text] [Related]
18. Prediction of acute mammalian toxicity from QSARs and interspecies correlations. Devillers J; Devillers H SAR QSAR Environ Res; 2009 Jul; 20(5-6):467-500. PubMed ID: 19916110 [TBL] [Abstract][Full Text] [Related]
19. Application of chemical reaction mechanistic domains to an ecotoxicity QSAR model, the KAshinhou Tool for Ecotoxicity (KATE). Furuhama A; Hasunuma K; Aoki Y; Yoshioka Y; Shiraishi H SAR QSAR Environ Res; 2011; 22(5-6):505-23. PubMed ID: 21604231 [TBL] [Abstract][Full Text] [Related]
20. Structural alerts--a new classification model to discriminate excess toxicity from narcotic effect levels of organic compounds in the acute daphnid assay. von der Ohe PC; Kühne R; Ebert RU; Altenburger R; Liess M; Schüürmann G Chem Res Toxicol; 2005 Mar; 18(3):536-55. PubMed ID: 15777094 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]