BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

240 related articles for article (PubMed ID: 18384908)

  • 21. Archaeal transcription: making up for lost time.
    Wojtas MN; Abrescia NG
    Biochem Soc Trans; 2013 Feb; 41(1):356-61. PubMed ID: 23356311
    [TBL] [Abstract][Full Text] [Related]  

  • 22. RNAP subunits F/E (RPB4/7) are stably associated with archaeal RNA polymerase: using fluorescence anisotropy to monitor RNAP assembly in vitro.
    Grohmann D; Hirtreiter A; Werner F
    Biochem J; 2009 Jul; 421(3):339-43. PubMed ID: 19492989
    [TBL] [Abstract][Full Text] [Related]  

  • 23. RNase P: interface of the RNA and protein worlds.
    Evans D; Marquez SM; Pace NR
    Trends Biochem Sci; 2006 Jun; 31(6):333-41. PubMed ID: 16679018
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Structure and function of lineage-specific sequence insertions in the bacterial RNA polymerase beta' subunit.
    Chlenov M; Masuda S; Murakami KS; Nikiforov V; Darst SA; Mustaev A
    J Mol Biol; 2005 Oct; 353(1):138-54. PubMed ID: 16154587
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Transcription regulation at the core: similarities among bacterial, archaeal, and eukaryotic RNA polymerases.
    Decker KB; Hinton DM
    Annu Rev Microbiol; 2013; 67():113-39. PubMed ID: 23768203
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Evolution of complex RNA polymerases: the complete archaeal RNA polymerase structure.
    Korkhin Y; Unligil UM; Littlefield O; Nelson PJ; Stuart DI; Sigler PB; Bell SD; Abrescia NG
    PLoS Biol; 2009 May; 7(5):e1000102. PubMed ID: 19419240
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The origin of viruses and their possible roles in major evolutionary transitions.
    Forterre P
    Virus Res; 2006 Apr; 117(1):5-16. PubMed ID: 16476498
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The screening of expression and purification conditions for replicative DNA polymerase associated B-subunits, assignment of the exonuclease activity to the C-terminus of archaeal pol D DP1 subunit.
    Jokela M; Raki M; Heikkinen K; Sepponen K; Eskelinen A; Syväoja JE
    Protein Expr Purif; 2005 Sep; 43(1):73-84. PubMed ID: 15979340
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The structure of T. aquaticus DNA polymerase III is distinct from eukaryotic replicative DNA polymerases.
    Bailey S; Wing RA; Steitz TA
    Cell; 2006 Sep; 126(5):893-904. PubMed ID: 16959569
    [TBL] [Abstract][Full Text] [Related]  

  • 30. RNA polymerase IV functions in paramutation in Zea mays.
    Erhard KF; Stonaker JL; Parkinson SE; Lim JP; Hale CJ; Hollick JB
    Science; 2009 Feb; 323(5918):1201-5. PubMed ID: 19251626
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Similar subunit architecture of archaeal and eukaryal RNA polymerases.
    Best AA; Olsen GJ
    FEMS Microbiol Lett; 2001 Feb; 195(1):85-90. PubMed ID: 11167000
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The origin and early evolution of nucleic acid polymerases.
    Lazcano A; Llaca V; Cappello R; Valverde V; Oró J
    Adv Space Res; 1992; 12(4):207-16. PubMed ID: 11538140
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Diversification of function by different isoforms of conventionally shared RNA polymerase subunits.
    Devaux S; Kelly S; Lecordier L; Wickstead B; Perez-Morga D; Pays E; Vanhamme L; Gull K
    Mol Biol Cell; 2007 Apr; 18(4):1293-301. PubMed ID: 17267688
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Archaeal DNA replication: identifying the pieces to solve a puzzle.
    Cann IK; Ishino Y
    Genetics; 1999 Aug; 152(4):1249-67. PubMed ID: 10430556
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Functional divergence of eukaryotic RNA polymerases: unique properties of RNA polymerase I suit its cellular role.
    Viktorovskaya OV; Schneider DA
    Gene; 2015 Feb; 556(1):19-26. PubMed ID: 25445273
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Homology between RNA polymerases of poxviruses, prokaryotes, and eukaryotes: nucleotide sequence and transcriptional analysis of vaccinia virus genes encoding 147-kDa and 22-kDa subunits.
    Broyles SS; Moss B
    Proc Natl Acad Sci U S A; 1986 May; 83(10):3141-5. PubMed ID: 3517852
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Evolution of RNA polymerases and branching patterns of the three major groups of Archaebacteria.
    Iwabe N; Kuma K; Kishino H; Hasegawa M; Miyata T
    J Mol Evol; 1991 Jan; 32(1):70-8. PubMed ID: 1901370
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Archaebacterial DNA-dependent RNA polymerases testify to the evolution of the eukaryotic nuclear genome.
    Pühler G; Leffers H; Gropp F; Palm P; Klenk HP; Lottspeich F; Garrett RA; Zillig W
    Proc Natl Acad Sci U S A; 1989 Jun; 86(12):4569-73. PubMed ID: 2499884
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Archaebacteria and eukaryotes possess DNA-dependent RNA polymerases of a common type.
    Huet J; Schnabel R; Sentenac A; Zillig W
    EMBO J; 1983; 2(8):1291-4. PubMed ID: 10872322
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Identification of an ortholog of the eukaryotic RNA polymerase III subunit RPC34 in Crenarchaeota and Thaumarchaeota suggests specialization of RNA polymerases for coding and non-coding RNAs in Archaea.
    Blombach F; Makarova KS; Marrero J; Siebers B; Koonin EV; van der Oost J
    Biol Direct; 2009 Oct; 4():39. PubMed ID: 19828044
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.