These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

241 related articles for article (PubMed ID: 18384908)

  • 41. Comprehensive multigene phylogenies of excavate protists reveal the evolutionary positions of "primitive" eukaryotes.
    Simpson AG; Inagaki Y; Roger AJ
    Mol Biol Evol; 2006 Mar; 23(3):615-25. PubMed ID: 16308337
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Evidence of independent gene duplications during the evolution of archaeal and eukaryotic family B DNA polymerases.
    Edgell DR; Malik SB; Doolittle WF
    Mol Biol Evol; 1998 Sep; 15(9):1207-17. PubMed ID: 9729885
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Distribution and roles of X-family DNA polymerases in eukaryotes.
    Uchiyama Y; Takeuchi R; Kodera H; Sakaguchi K
    Biochimie; 2009 Feb; 91(2):165-70. PubMed ID: 18706967
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Similarity between subunit 8 of yeast RNA polymerase II (RPB8) and the second-largest subunits of eukaryotic RNA polymerases.
    Kontermann R; Bautz EK
    Nucleic Acids Res; 1992 Oct; 20(19):5231. PubMed ID: 1408842
    [No Abstract]   [Full Text] [Related]  

  • 45. Structure of eukaryotic RNA polymerases.
    Cramer P; Armache KJ; Baumli S; Benkert S; Brueckner F; Buchen C; Damsma GE; Dengl S; Geiger SR; Jasiak AJ; Jawhari A; Jennebach S; Kamenski T; Kettenberger H; Kuhn CD; Lehmann E; Leike K; Sydow JF; Vannini A
    Annu Rev Biophys; 2008; 37():337-52. PubMed ID: 18573085
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Eukaryotic nuclear RNA polymerases (EC 2.7.7.6).
    Cook DA; Slater RJ
    Methods Mol Biol; 1993; 16():59-72. PubMed ID: 19082969
    [No Abstract]   [Full Text] [Related]  

  • 47. Structure and evolution of prokaryotic and eukaryotic RNA polymerases: a model.
    Armaleo D
    J Theor Biol; 1987 Aug; 127(3):301-14. PubMed ID: 3431127
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Thymidine kinases in archaea.
    Clausen AR; Matakos A; Sandrini MP; Piskur J
    Nucleosides Nucleotides Nucleic Acids; 2006; 25(9-11):1159-63. PubMed ID: 17065082
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Novel families of putative protein kinases in bacteria and archaea: evolution of the "eukaryotic" protein kinase superfamily.
    Leonard CJ; Aravind L; Koonin EV
    Genome Res; 1998 Oct; 8(10):1038-47. PubMed ID: 9799791
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Archaeal RNA polymerase.
    Hirata A; Murakami KS
    Curr Opin Struct Biol; 2009 Dec; 19(6):724-31. PubMed ID: 19880312
    [TBL] [Abstract][Full Text] [Related]  

  • 51. RNA polymerase subunit H features a beta-ribbon motif within a novel fold that is present in archaea and eukaryotes.
    Thiru A; Hodach M; Eloranta JJ; Kostourou V; Weinzierl RO; Matthews S
    J Mol Biol; 1999 Apr; 287(4):753-60. PubMed ID: 10191143
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Eukaryotic deoxyribonucleic acid-dependent ribonucleic acid polymerases: a critical assessment of current ideas concerning their multiplicity, specificity and function and their role in the regulation of gene expression.
    Beebee TJ; Butterworth PH
    Biochem Soc Symp; 1977; (42):75-98. PubMed ID: 339922
    [TBL] [Abstract][Full Text] [Related]  

  • 53. [Archaeal transcriptional machinery].
    Hirata A
    Seikagaku; 2009 May; 81(5):377-81. PubMed ID: 19522293
    [No Abstract]   [Full Text] [Related]  

  • 54. The RNA polymerase factory and archaeal transcription.
    Weinzierl RO
    Chem Rev; 2013 Nov; 113(11):8350-76. PubMed ID: 23978070
    [No Abstract]   [Full Text] [Related]  

  • 55. Insights into the architecture of the replicative helicase from the structure of an archaeal MCM homolog.
    Bae B; Chen YH; Costa A; Onesti S; Brunzelle JS; Lin Y; Cann IK; Nair SK
    Structure; 2009 Feb; 17(2):211-22. PubMed ID: 19217392
    [TBL] [Abstract][Full Text] [Related]  

  • 56. The sequence, and its evolutionary implications, of a Thermococcus celer protein associated with transcription.
    Kaine BP; Mehr IJ; Woese CR
    Proc Natl Acad Sci U S A; 1994 Apr; 91(9):3854-6. PubMed ID: 8171001
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Directed evolution of novel polymerases.
    Holmberg RC; Henry AA; Romesberg FE
    Biomol Eng; 2005 Jun; 22(1-3):39-49. PubMed ID: 15857782
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Relatedness of archaebacterial RNA polymerase core subunits to their eubacterial and eukaryotic equivalents.
    Berghöfer B; Kröckel L; Körtner C; Truss M; Schallenberg J; Klein A
    Nucleic Acids Res; 1988 Aug; 16(16):8113-28. PubMed ID: 2843811
    [TBL] [Abstract][Full Text] [Related]  

  • 59. A single birth of all plastids?
    Palmer JD
    Nature; 2000 May; 405(6782):32-3. PubMed ID: 10811205
    [No Abstract]   [Full Text] [Related]  

  • 60. Recent developments in the optimization of thermostable DNA polymerases for efficient applications.
    Pavlov AR; Pavlova NV; Kozyavkin SA; Slesarev AI
    Trends Biotechnol; 2004 May; 22(5):253-60. PubMed ID: 15109812
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.